
Extending Behavior Trees with
Classical Planning

Dat6, spring semester 2011

Group f11d624a

Master Thesis

Department of Computer Science

Aalborg University

9th of June 2011

Title: Extending Behavior Trees with
Classical Planning
Theme: Artificial Intelligence in Video
Games
Project period: Dat6, spring semester
2011

Project type: Master Thesis
Project group: f11d624a
Group members:

Søren Larsen

Jonas Groth

Supervisor: Yifeng Zeng

Copies: 5
Number of pages: 72
Appendices: 4
Completion date: 9th of June, 2011

The contents of this report are openly available, but publication (with reference to the source)
is only allowed with the agreement of the authors.
Additional material available on the attached CD, at http://homes.student.aau.dk/jgroth07/thesis/
or by request from the authors.

Abstract:

We investigate the area of behavior trees
and planning in video game AI. The syn-
tax and semantics of behavior trees and
the concept of classical planning is de-
scribed along with the theory behind the
widely used search algorithm A*. A com-
parison of scripting and behavior trees is
performed to identify the advantages of
behavior trees. The advantages are used
to validate that our extension of behavior
trees does not violate them. We describe an
extension of behavior trees with classical
planning including a method for using
states with the otherwise stateless beha-
vior tree formalism. An implementation
of the A* search algorithm for finding a se-
quence of behavior trees that will change
the state of the world to some predefined
goal state is also proposed. We test the
approach with good results including the
fact that the advantages of behavior trees
are maintained as intended.

http://homes.student.aau.dk/jgroth07/thesis/

C O N T E N T S

1 introduction 1

1.1 Problem Statement . 2

2 theory 3

2.1 Behavior Trees . 3

2.1.1 Syntax & Semantics . 3

2.1.2 Changes to the Formalism . 6

2.1.3 Execution Flow . 6

2.2 Planning . 7

2.2.1 Classical Planning . 8

2.3 A* Search . 9

2.4 Related Work . 11

3 comparison 13

3.1 Scenario . 13

3.1.1 Unity 3D . 14

3.2 Comparison of Behavior Trees . 15

3.2.1 Basic Behavior . 15

3.2.2 Extension One . 17

3.2.3 Extension Two . 19

3.3 Efficiency . 21

3.4 Summary . 22

4 extending behavior trees 23

4.1 Preliminaries . 23

4.1.1 Preconditions, Effects and the World State 23

4.1.2 Goal . 23

4.1.3 Components . 24

4.2 Planning . 25

4.2.1 Goal Decomposition . 25

4.2.2 Component planning . 27

4.3 Implementation . 29

4.4 Summary . 30

5 experiments 31

5.1 Experiment 1 . 31

5.2 Experiment 2 . 35

5.3 Experiment 3 . 40

5.4 Summary . 44

6 conclusion 47

6.1 Future Work . 48

a scripts for comparison 51

b component libraries for experiments 55

c goal graphs for experiments 59

d search graph for test 3 61

bibliography 61

v

L I S T O F F I G U R E S

Figure 2.1 Syntax of the nodes of the Behavior Tree (BT) formalism. 4

Figure 2.2 Example of a behavior tree using the nodes from Figure 2.1. 7

Figure 2.3 A* search example of a pathfinding problem. 10

Figure 2.4 A* search example expansions based on the graph from Figure 2.3. . 10

Figure 3.1 The scenario viewed in the Unity 3D editor. 13

Figure 3.2 The scenario from Figure 3.1 viewed from above. 14

Figure 3.3 Overview of Unity and the BT framework. 15

Figure 3.4 The basic behavior illustrated in the scenario. 15

Figure 3.5 Behavior Tree for the basic behavior from Figure 3.4. 16

Figure 3.6 The first extension to the basic behavior. 17

Figure 3.7 Behavior Tree for the first extension from Figure 3.6. 18

Figure 3.8 Behavior Tree: GoIntoRoom2 linked in Figure 3.7. 19

Figure 3.9 The second extension to the basic behavior. 19

Figure 3.10 Behavior Tree for the second extension from Figure 3.9. 21

Figure 4.1 Simple Goal with three decompositions, each containing three goals . 24

Figure 4.2 Node syntax for the Planning Node. 29

Figure 4.3 Generic structure of the virtual BT used internally in the planning node. 29

Figure 4.4 Overview of Unity and the BT framework extended with planning. . . 30

Figure 5.1 Static behavior for Experiment 1. 31

Figure 5.2 Part of the goal decomposition graph for Experiment 1. 32

Figure 5.3 The graph for the static behavior’s selections of movement to Bar. . . 33

Figure 5.4 The graph for the planning behavior’s selections of movement to Bar. 33

Figure 5.5 The graph for the static behavior’s selections of movement to Patron. 34

Figure 5.6 The graph for the planning behavior’s selections of movement to Patron. 34

Figure 5.7 The graph for the static behavior’s selections of movement to Start. . 35

Figure 5.8 The graph for the planning behavior’s selections of movement to Start. 35

Figure 5.9 Static behavior for Experiment 2. 36

Figure 5.10 Part of the goal decomposition graph for Experiment 2. 37

Figure 5.11 The graph for the static behavior’s selections of movement to Bar. . . 37

Figure 5.12 The graph for the planning behavior’s selections of movement to Bar. 38

Figure 5.13 The graph for the static behavior’s selections of movement to Patron. 38

Figure 5.14 The graph for the planning behavior’s selections of movement to Patron. 39

Figure 5.15 The graph for the static behavior’s selections of movement to Start. . 39

Figure 5.16 The graph for the planning behavior’s selections of movement to Start. 40

Figure 5.17 Static behavior for Experiment 3 . 40

Figure 5.18 The preconditions of the world state and the goal 41

Figure 5.19 Expansion one of the A* search . 42

Figure 5.20 Expansion two of the A* search . 42

Figure 5.21 Expansion three of the A* search . 42

Figure 5.22 Expansion four of the A* search . 43

Figure 5.23 Expansion five of the A* search . 43

vi

Figure 5.24 Expansion six of the A* search . 44

L I S T O F TA B L E S

Table 3.1 FPS comparison of scripting and Behavior Trees 22

L I S T I N G S

Listing 3.1 The basic behavior from Figure 3.4 as a script. 16

Listing 3.2 The first extension from Figure 3.6 as a script. 17

Listing 3.3 The second extension from Figure 3.9 as a script. 20

A C R O N Y M S

FSM Finite State Machine

HTN Heirachical Task Network

BT Behavior Tree

GOAP Goal Oriented Action Planning

AI Artificial Intelligence

FPS First Person Shooter

NPC Non-player Character

STRIPS Stanford Research Institute Problem Solver

PDDL Planning Domain Definition Language

GOAP Goal Oriented Action Planning

DLL Dynamic Link Library

RTS Real-time Strategy

DAG Directed Acyclic Graph

RPG Role-playing Game

ME Max Entropy

MDE Max Discounted Entropy

vii

1
I N T R O D U C T I O N

The area of Non-player Character (NPC) behavior in games is an area that is widely char-
acterized by static Artificial Intelligence (AI). This is easily seen when looking at the wide
application of techniques such as scripting and Finite State Machines (FSMs). These methods
both provide the tools to create complex and even collaborative behavior. However they will
still be static in the sense that the behavior always has a certain set of paths it can follow
based on observations in the game environment. BTs also exhibit the same static behavior
as the two previously mentioned methods; however it has the advantage of being more
intuitive and easier to understand and implement.

Still BTs have yet to be used in the same degree as scripting and FSMs. In recent years
however it has been used in very big and popular titles such as Crysis [16] and several
games from the Halo series [8] [2] [1]. However there is little to no cohesion between the
different BT implementations. The main problem is the fact that there is no single formalism
for BTs and for this reason every game development company will call its implementation
of a behavior Directed Acyclic Graph (DAG) structure for AIs a BT structure. Though, they
all share the same abstract definition of the tiered tree structure defining execution flow of
the complete behavior.

In academic AI several techniques exist that are able to adapt to the environment and
learn from the successes and failures experienced. The most prominent areas of these are
planning and learning. The problem with these techniques is that they typically are very
computationally heavy and thus difficult to implement in the real-time and complex domain
of game AI.

The advantage of using learning or planning is that it is possible to construct an AI that
will adapt to the environment without having to specify every single possible scenario by
simply planning what to do or learn what is optimal in the exact situation. This of course
opens up a whole new set of complexities that needs to be addressed for the planning
or learning system to function correctly. These complexities include defining a sensible
Q-function for Q-learning or a proper cost and heuristic function for an A* search. Finding
these can prove quite a challenge and as the state or action space grows it becomes even
more challenging.

This is why the academic AI techniques often are not used in the complete form when
creating game AI. An example of a game that uses a method from the traditional academic
AI is the game F.E.A.R., [12], which uses a planning system in conjunction with a simple
FSM to control the AI in the game, [14].

The aim of this project is to investigate what the advantages of using BTs in game AI are
to identify the properties that need to be maintained by an extension. Further more we will
investigate if extensions similar to those available for scripting and FSMs are applicable for
BTs. All tests will be performed in a modern game engine to show the applicability of our
approach in modern games.

1

2 introduction

1.1 problem statement

The problem statement for this thesis is derived from our previous work on BTs where two
main problems were proposed for future work and research on the subject [10]. However,
we have based our problem statement on only one of these problems:

Can Behavior Trees be extended with planning so that the creation of more diverse
NPC behavior is possible?

To further investigate the above given problems, we propose the following sub questions
that will be addressed as well:

• What are the advantages of BTs compared to current game AI techniques?

• Is planning a feasible approach to game AI?

• How can planning be incorporated into BTs?

• And is it possible to maintain these advantages of BTs, when extended with planning?

2
T H E O RY

The purpose of this chapter is twofold. First, we want to introduce and discuss the theoretical
aspects that serves as the basis for the work conducted in this thesis, and thus, establish a
notational foundation for the following chapters. Secondly, we will also describe related
work as inspiration for our proposed extension.

2.1 behavior trees

BTs are a relatively new up and coming approach to designing behaviors primarily aimed
at NPCs. Although no single defined formalism exists several game development companies
are adopting the idea of BTs. Companies often develop their own formalism that fits well
into their development process thus achieving the goal of making it easier to create more
complex behavior for their new games [16] [8] [2] [1].

BTs exhibit the same static properties of both scripting and FSMs in the sense that all
behavior is predefined. The most significant advantage that BTs hold over scripting and FSMs
is the easily understandable graphical representation and the ease of changing behavior at
specific points in the tree. We will compare scripting and BTs in chapter 3.

BTs however lack some features compared to FSMs. The primary feature that FSMs have
over BTs is reactive control. FSMs make transitions between states based on events in the
game while BTs use the tree structure to determine what to execute next and how to handle
failures. The event driven approach allows FSMs to react to events in the world in any state
of the FSM if there is a transition that handles the event. BTs do not have this feature as you
will need to check in each node if the event has occurred in the world and even if this is
done BTs still lack the ability to specify a point in the tree to jump to, that can handle the
event.

We will now describe the syntax and semantics of BTs by explaining each of the nodes
available, ending with a description of the execution flow.

2.1.1 Syntax & Semantics

A BT is syntactically represented as a rooted tree structure, comprised of the nodes described
below. Each node in a BT will have a final status after execution. Each status describes
information that parent nodes can use to define what to execute next. The statuses are
defined below.

- Succeeded

- Failed

- Exception

Once a node has executed it will have one of the above statuses. The status Succeeded is the
status of a node that has successfully executed. The status Failed is used when a node has
failed during execution. This does not define how it failed, just that it did. What defines
a success or failure depends on the node and will be explained below. The last status,
Exception, defines if something unexpected happened during execution. We will not be
using this status but only make note that it is available in the formalism.

3

4 theory

(a) Root (b) Sequence (c) Selector (d) Parallel

L

(e) Link (f) Action

Figure 2.1: Syntax of the nodes of the BT formalism.

Root

The Root node, seen in Figure 2.1a, is of no functional interest. It is used as a graphical tool
to easily identify the first node in a tree. Graphically the root node can only have one child
and this child is the first node in the tree. During execution the node is ignored and its child
is executed instead.

Sequence

The Sequence node, seen in Figure 2.1b, is used to execute multiple branches in sequence
with the catch that if one of the branches fail then the node stops executing further and
sets its status to failed. If all children successfully execute the sequence node succeeds.
Sequence nodes can be augmented with a guarding condition that applies to all children.
This requires the condition to be true in order for the sequence to continue to execute its
children. The sequence can also have a condition attached to each child that is required to be
true in order for that child to execute. This can help avoid attempting branches that cannot
successfully complete. The condition of the node is written inside the node. However, as the
condition can become large the node size should not grow indefinitely so only a subpart of
the condition can be chosen to be shown in the node and the rest being defined in the code
behind the node. The condition of children are attached to the link between the sequence
and the children.

Selector

The Selector, seen in Figure 2.1c, node has a logically inverted execution compared to the
sequence. The selector will attempt to execute its children from left to right until one of
them succeed. If all children fail then the selector fails, but if one child succeeds the Selector
succeeds As with the sequence node it is possible to augment the node itself or each of its
children with conditions that guard execution.

Probability Selector

The Probability Selector node, seen in Figure 2.1c, has the same success criteria as the selector
but the process of choosing a child is different. Each child branch of the probability selector
is assigned a probability and during execution, a child branch is selected probabilistically
among the the child branches based on the attached probabilities. The probabilities are
written next to the link between the probability selector and its children. This gives BTs a
way of generating random behavior with some control. The probability selector succeeds if
one child succeeds and fails if all children fail just as with the selector.

2.1 behavior trees 5

Again as this node is a variant of the selector node it also pertains the same condition
properties.

Parallel

The Parallel node, seen in Figure 2.1d, adds the notion of concurrent execution to BTs. The
concurrency is however not actual concurrency but rather opens the possibility of executing
multiple branches in the tree sequentially during a single execution of the tree. How this is
actually done will be discussed in subsection 2.1.3. The success or failure of a parallel node
can be hard to define but we have defined three different success types:

- All Succeed

- Minimum Succeed

- Specific Succeed

The All Succeed requires all child branches to succeed in order for the Parallel node to
succeed, which resembles the sequence node. The Minimum Succeed requires a predefined
minimum of child branches to succeed in order for the node to succeed. It disregards which
of them succeed as long as the given minimum number of branches succeed. The Specific
Succeed has a set of specific branches that must succeed. Branches that are not required to
succeed are disregarded when determining if the node has succeeded. All nodes that are
required to succeed must succeed or else the parallel node fails.

The parallel node also has the option of being augmented with a condition that guards
execution and the option of augmenting each child with a condition to also guard their
execution individually.

In this thesis we will not be using the parallel node but the syntax and semantics have
been included to complete the BT formalism.

Action

The Action node, seen in Figure 2.1f, is used to perform actions in the game environment.
The name of the action and the parameters are written beneath the action node. These
actions can be any action available in the game environment for the given NPC. Actions
succeed and fail based on the action they want to perform in the environment. An action
can, as most nodes, also result in exception if for some reason the action does not end in
success or failure. An example of this could be that an NPC is ordered to open a door. If
the NPC opens the door it succeeds but if the door is locked it fails. However if perhaps the
door was stuck, this could result in exception status for the action.

It is important to keep action nodes as concise as possible to avoid implementing entire
behaviors in a single action node thus defeating the purpose of building the BT in the first
place.

Link

The Link node, seen in Figure 2.1e, is used in a BT to reference and execute another BT in
place of the node. The name of the tree executed is written beneath the node. The success
and failure of a Link node is based on the referenced BT. This node adds the ability to make
modular BTs which supports reuse of behavior.

6 theory

2.1.2 Changes to the Formalism

As opposed to our previous work in [10] we have changed the notion of conditions in BTs. In
[10] we used explicit conditions as leaf nodes in the trees but this proved to be problematic
as it increased the number of sequence nodes in the tree. This situation occurred when a
branch of the tree needed to be guarded by some condition. This would require the insertion
of a sequence node with first a condition and then the guarded branch. As one can imagine
this would grow the tree unnecessarily just for the sake of guarding branches.

We adapted our formalism based on other incarnations of BTs that include conditions
on nodes and children. In [3] they describe conditions on sequences and selectors and in
addition on the child branches of selectors. While in [16] all nodes are considered actions and
all actions are guarded by conditions. As we have described above we have adapted these
above approaches to work in our BT formalism. We removed the condition node completely
and replaced it by allowing a condition to guard sequences, selectors and parallels and
also their children. These conditions must always be true and if we at some point discover
that an active branch’s guarding condition becomes false, that branch must be halted and
the tree structure should define what to do next. For instance a selector node that handles
the failure of a branch by initiating another branch. Although we will not be using these
conditions we have described them here as they will be important for future work described
later.

We have also removed the Decorator node from the syntax as this proved to have a
incomprehensible role in the tree. The role of being able to do almost anything made it
hard to understand which role it had in the constructed behavior. That being said it may
be interesting to have it return to the formalism in the form of a looping construct that
can loop its child branch on some conditions. These conditions could be a set number of
iterations, while some condition is true or false repeat etc. This would give the decorator a
much more defined and understandable role. As we did not see the need for the looping
construct in our thesis we have excluded the node.

2.1.3 Execution Flow

To illustrate the execution flow of a BT we have made an example of a complete BT, illustrated
in Figure 2.2. This example shows a BT with a single sequence node as the first node. This
sequence has two selectors as its children, a probability selector and a selector and is guarded
by a condition that requires the controlled NPC to be alive. The selectors each have a link
node and an action node as their children. The probability selector will probabilistically
select with 50% probability between the two leaf nodes while the selector will attempt to
execute the GetFood link node if the NPC has no food, else it will eat the food.

The execution of the tree will start by executing the sequence node. This will cause the
probability selector to be executed. Which of the two branches will be executed is selected
probabilistically, as described above. Once one of the branches has succeeded the sequence
node will execute its second branch that will instruct the controlled NPC to get food, if it
has none, and otherwise eat it. If both branches of one of the selector nodes fail, the selector
node will fail causing the sequence and thus the entire tree to fail.

2.2 planning 7

L L

Alive

Run(Home) BreakIn GetFood Eat

0.5 0.5 !HasFood

Figure 2.2: Example of a behavior tree using the nodes from Figure 2.1.

2.2 planning

In relation to the general field of AI, we can categorize planning within the area of reasoning.
That is, in planning we reason about how to act given our perception of the surroundings
and by the expected outcome of the actions available. The purpose of this reasoning process
is to acieve a sequence of actions that result in reaching some predefined objectives in the
best way possible. The following elaboration on this reasoning process we call planning is
heavily based on the work in [4, Chapter 1,2,4 & 11].

As with many other areas of AI, planning relies on a general model to describe the actual
problem. More specifically, the model of state-transition systems is used. A state-transition
system can be defined as a 4-tuple Σ(S, A, E, γ) where S = {s1, s2, . . . } is the set of states,
A = {a1, a2, . . . } the set of actions, E{e1, e2, . . . } a set of events and γ is a state-transition
function. However, we will assume some restrictions to this typical notion of transition
systems:

Finite Σ: We require that the set of states in Σ is finite.

Fully observable Σ: The current state of Σ is fully observable. That is, we have
complete knowledge about it.

Deterministic Σ: Transitions in Σ result in a deterministic change of the current state.

Static Σ: The system Σ has no internal dynamics. State transitions are always a result
of an applied action by the planner, and not caused by events in the domain. Thus,
the set E is no longer part of Σ and γ.

Restricted Goals: We only plan for a single goal state or a set of goal states. A solution
is any sequence of state transitions that end at one of the goal states.

Sequential Plans: Planning solutions are a sequence of sequentially ordered actions.

Implicit Time: Actions applied to Σ implies instantaneous state transitions. Thus,
actions are considered to have no duration and time is therefore implicit.

Offline Planning: Any changes in Σ while planning are disregarded.

Unless otherwise stated, all of these restrictions will be assumed in the state-transition
systems used in the rest of this thesis.

Now we have a restricted state-transition system defined as a 3-tuple Γ = (S, A, γ). The
sets S and A are as previously defined, and the state-transition function is now defined as
γ : S× A → S2.So, given an action and a state, a and s, γ(a, s) gives a state s′ that is the
result of taking a in s.

8 theory

A well known representation of a state-transition system is a directed graph. We use
nodes to represent states in S and edges between states s and s′ are labeled with an action
a if γ(s, a) = s′. Thus, edges represent state transition between states. With this graph
representation, the actual problem of planning is reduced to finding a path in the graph
between an initial state s0 and one or more goal states in the set Sg of possible goal states
we aim to reach. The resulting path is a sequence of action 〈a1, a2 . . . , ak〉 between states
(s1, s2 . . . , sk) such that γ(γ(. . . γ(γ(s0, a1), a2), . . . , ak−1), ak) ∈ Sg

2.2.1 Classical Planning

When planning for the restricted state-transition system we refer to it as classical planning.
Though in other literature it may be referred to as Stanford Research Institute Problem Solver
(STRIPS) planning, Planning Domain Definition Language (PDDL) planning etc. depending
on the planning language used to represent the planning domain and problem. They all rely
on the same restricted state-transition system however. In the following on classical planning
we use a set-theoretic representation, where states of the world are sets of propositions.
Thus a basic understanding of propositional logic is required from the reader.

Now, with a set-theoretic representation, the planning domain Σ = (S, A, γ) is as defined
in Definition 2.1.

Definition 2.1 – Planning Domain Σ
Assume a finite set of propositions denoted by L = {p1, . . . , pn}. Then a planning

domain on L is a state state-transition system Σ = (S, A, γ) where:

- S ⊆ 2L such that each state s can be any possible subset of L. That is, if
proposition p ∈ s then we say that p holds in the state represented by s. It
follows that s denotes the set of propositions that make up the state. Then if
p /∈ s, by definition, p does not hold in s.

- The actions a ∈ A denote a triple of subsets of L. We write this as
a = (precond(a), e f f ects−(a), e f f ects+(a)). Here, precond(a) is the set
of propositions that are required to hold for a to be applicable. Then if
precond(a) ⊆ s, a may be applied when in s. The set precond(a) is also
referred to as the preconditions of a. We call the other two sets, e f f ects−(a)
and e f f ects+(a), the effects of a, and these are required to be disjoint.

- The set S of states need not be fully specified. We may infer new states from a
state s ∈ S by the actions applicable to s. That is because when an action a is
applied to s we have (s− e f f ects−(a)) ∪ e f f ects+(a) ∈ S.

- We define the state-transition function as γ(s, a) = (s − e f f ect−(a)) ∪
e f f ect+(a). This requires that a ∈ A is applicable to s ∈ S, and if not, γ(s, a)
is undefined.

The property that we me infer new states from the effects of actions, reliefs us from
enumerating all states in S. This is useful, because even with a small set P of propositions,
the number of possible states can become infeasable to enumerate.

We now define a planning problem P in Definition 2.2.1.

2.3 a* search 9

Definition 2.2 – Planning Problem P
A set-theoretic planning problem is a triple P = (Σ, s0, g), where:

- Σ as defined above.

- s0 is the initial state, and s0 ∈ S.

- g ⊆ L is a set of propositions that a state must satisfy to be considered a goal
state. That is, s ⊇ g for s to be a goal state. The set of goal states is denoted
Sg = {s ∈ S|g ⊆ s}

Finding the solution to P requires finding a path from s0 to g in the directed graph we
can construct from Σ. This can be done by using either forward or backward graph search
algorithms. The A* search algorithm has proven very popular for this purpose.

2.3 a* search

The A* search approach is probably one the most widely used in graph search and pathing
problems, in which we seek to obtain a path from a start node to one or more goal nodes.
Because of it’s applicability it has seen use within many fields. Computer gaming and AI
is no exception, where A* is probably the most used algorithm for pathfinding allowing
NPCs to navigate and move within a game environment. Recall also, that in section 2.2 we
referred to A* as a purposeful approach to searching the state-space of a planning problem.

A* is an implementation of so called best-first search, where we use an evaluation function,
f (n), to guide the node, n, traversal in graph and tree searching problems [18, Section
3.5]. The evaluation functions adds problem-specific knowledge about the problem that is
beyond that of the problem definition itself. This is compared to for instance depth-first
search, where the search is performed solely on basis of the information available from the
search problem itself. The evaluation function serves as a cost estimate of the search, such
that at a node n we only expand the adjacent node n′ with the lowest cost.

For A* the evaluation function is defined as follows.

f (n) = g(n) + h(n)

Here g(n) denotes the accumulated cost when reaching the node n, and h(n) is an
estimate of the cost to reach the goal from n. The h(n) function in f (n) is also referred to as
a heuristic function. It follows that for any node n, the cost of the cheapest solution through
this node is estimated by f (n). Traversing the nodes in a graph based on the lowest f (n)
value should then intuitively result in the cheapest path.

A* has several advantages [18, Section 3.5.2]. It is proved complete, meaning that if a
solution exists, A* search will find it. Furthermore A* is optimal in the sense that the solution
found will always be the cheapest. The optimality of A* however requires that the heuristic
function is admissible and consistent for graph-search problems. An admissible heuristic
never overestimates the cost to reach the goal from the current node. We call a heuristic
consistent if for every node n and successor node n′ as a result of taking the action a, the
h(n) value is no greater than h(n′) plus the cost of a. When the heuristic is consistent, f (n)
will be nondecreasing.

Now, consider a simple example like the one in Figure 2.3b to illustrate how A* is used
for graph searching. The example illustrates a pathing problem where an NPC must find
the shortest route from an initial location s to a goal location g with a set of waypoints
{w1, w2, w3, w4, w5} that can be traversed. Edges between the waypoints indicate if the NPC

10 theory

Node h(n)

s 1000

w1 750

w2 800

w3 500

w4 75

w5 750
(a) The h(n) values for the nodes

s

w

g

1

w2

w3

w4

w5
175

250

225

500

700

425

750

(b) Graph representation

Figure 2.3: A* search example of a pathfinding problem.

may move from one waypoint to another. Edges are labeled with their cost, which in this
case are relative distances. The heuristic used here is the straighline distance to g from the
given location. That is, from e.g. w3 the straightline distance to g is h(w3) = 500. Note that
this heuristic is also admissible because the straightline distance between two points can
never be an overestimate. In Figure 2.3a all the h(n) values for the nodes are listed.

In Figure 2.4 we see the search graphs that A* search stepwise generates when used to
solve the pathing problem. A* first considers s, computes f (s) and then expands the two

w1 w2

s

975=175+8001000=250+750

(a)

w1 w2

w4

s

950=875+75

1000=250+750

(b)

w1 w2

w4

w5

s

2050=1300+750

1000=250+750

(c)

w1 w2

w3

g

w4

w5

s

2050=1300+750975=975+0

(d)

Figure 2.4: A* search example expansions based on the graph from Figure 2.3.

children w1 and w2. These are then considered for further expansion of the search graph by
comparing f (w1) and f (w2), as is illustrated in Figure 2.4a. Because f (w2) has the lowest
value of 975 it is chosen for expansion, making w1 and w4 the leaf nodes of the search graph.
This is illustrated in Figure 2.4b. In Figure 2.4c we see that w5 was chosen for expansion
because f (w4) = 950. Now w1 becomes the leaf node with the lowest f (n) value, and is
thus expanded. The search graph continues expansion along this branch until the goal node
g is reached. The final state of the search graph showing this, is illustrated in Figure 2.4d.

2.4 related work 11

2.4 related work

There are several interesting attempts at making it easier to make complex AI behavior. We
have looked at related work to get inspiration for the approach we want to develop and will
shortly describe this work in the following.

Query-Enabled Behavior Trees

In [3] an extension of BTs incorporating elements from case-based reasoning is described.
The proposed idea is to allow for the BT to be constructed at runtime by querying a case-base
to retrieve preconstructed BTs that match some criteria. One of the primary reasons for
doing the dynamic construction is that often behaviors constructed late in the design phase
are not utilized in behavior constructed earlier.

The main parts of the proposed approach are the case-base containing preconstructed
BTs and the Query node. The node is implemented in a way that makes a minimal impact
on the general structure of BTs. A Query node contains a query that at runtime is executed
upon the case-base to find the most suitable behavior to run. The selection of an appropriate
behavior is done based on a set of parameters called Relevant descriptors. The descriptors are
variables from the game state that are relevant to the query. As it may not be possible to
find an exact match in the case-base it is allowed to find behaviors that are similar based on
the similarity parameter. This parameter defines how similar the retrieved behavior must be
to fit the query.

Changes in the game state can occur when running a selected behavior, making another
behavior more suitable. It is then possible to Requery the case-base. Which changes should
trigger a requery can be defined in the requery parameter.

Goal Oriented Action Planning

The notion of Goal Oriented Action Planning (GOAP) combines FSMs and planning to achieve
an AI capable of planning how and when to utilize the states available in a FSM [14] [12].
The planning used in GOAP is an extension of STRIPS planning with an A* implementation
as the search algorithm.

The approach requires for each NPC, a set of goals that the NPC then has to prioritze
between. The current prioritized goal is then used to plan actions for the NPC to excecute.
At any point during planning or plan execution, another goal may be prioritized which
requires the NPC to initiate re-planning.

The extensions of GOAP compared to STRIPS includes adding costs to actions which help
guide the A* search and allowing procedural preconditions and effects of actions. Procedual
effects is what connects planning with FSMs in GOAP. Recall from section 2.2 that STRIPS relies
on a model where time is implicit. In GOAP however, effects of an action includes setting the
state of the FSM, and thus some of the changes to the world state are not instantaneous.

GOAP was developed with the intent to be used in the First Person Shooter (FPS) game
F.E.A.R. by Monolith Productions. It has since been used in other games and game genres,
e.g., the Real-time Strategy (RTS) game Empire Total War or the FPS game Deus Ex: Human
Evolution [15].

12 theory

Heirachical Task Networks and Scripting

[9] describes an approach to generating scripts for NPCs, tested in the Bethesda game The
Elder Scrolls IV: Oblivion. The approach relies on offline Heirachical Task Network (HTN)
planning to avoid expensive computations on runtime.

The architecture of the system relies on the game developers to design an HTN that
encodes the game world and implement a set of components called AI packages for each
action of the HTN. A list of planning problems and the corresponding world state for each
planning problem is also required. The planning system then plans each planning problem
by giving the planner the HTN, the planning problem and the initial world state. The planner
then outputs a plan for all NPCs. It is not possible to plan for each NPC separately, as it can
be required that a set of NPCs must collaborate or interact on a task.

After the plans are generated a script generator converts the plans into scripts in the The
Elder Scrolls IV: Oblivion scripting language. The generated scripts call the AI packages
defined above in the planned order. As these packages do not have preconditions attached,
the generated script maintains state information on where in the plan it currently is and
when it is appropriate to call the different packages by using a conditional structure and
the above mentioned state information.

Though offline planning has to deal with uncertainty at runtime by doing a lot of
contingency planning to account for different types of outcome it has the advantage of
being executed prior to runtime. The planning can then be a lot more complex comparing
to online planning which has to be optimized to avoid using excessive resources.

Heirachical Task Networks in Unreal Tournament

The authors of [17, Sec. 5.4] and [6] have applied HTN planning to Epic Games game Unreal
Tournament (UT). Using a combination of the Gamebot API software that allows remote
execution of bots on UT servers and an adapted version of the SHOP HTN planning system
they are able to formulate strategic plans for a team of bots and communicate these plans
back to the UT server.

The results show that the approach gives consistently better performance versus the
standard AI and also better versus a modified version of the standard AI that has been
improved in both navigation and domination tactics.

As opposed to the above approach of using offline HTN planning on NPCs, this approach
relies on online planning which allows adaption to changes in the game environment
instead of relying on having to make contingency steps in the generated plan.

3
C O M PA R I S O N

In this section we will compare scripting and BTs to determine the advantages of creating
AI in computer games so that we can maintain these advantages in our extension. One
important note is that in normal game environments there is a small overhead in the creation
of the nodes to be used in the BTs. However if the choice is made to use BTs early in the
development process this overhead can be disregarded as the construction of nodes is easy
when having access to the game’s API.

3.1 scenario

The scenario we have created for the purpose of this thesis, resembles a tavern like setting,
greatly inspired by role-playing games such as Never Winter Nights, The Elder Scrolls etc.
Typically taverns in Role-playing Game (RPG) games are social gathering points, where
multiple NPCs socialize and interact with each other and the environment. Environmental
interacting such as purchasing and consuming drinks, leaving and entering rooms and
interacting with furniture etc. Thus, this setting gives a great foundation for different
behaviors that both have to react to and interact directly with the environment. Figure 3.1
depicts the scenario, as it looks in Unity. In the following description of the scenario we

Figure 3.1: The scenario viewed in the Unity 3D editor.

will use a much simpler depiction however. The reason for this is twofold. Firstly, labeling
and referencing different objects in the scenario will become much clearer. Secondly, the
behaviors and their figurative depiction used later in this chapter will be easier to interpret.
Figure 3.2 illustrates the simple depiction of the scenario viewed from above. The layout of
the scenario is comprised of one large room, with four adjacent smaller rooms R1 through
R4. The smaller rooms are each seperated from the large room by doors. The start location
of our NPC is indicated by a star symbol, while the two uncontrolled NPCs, the patron
and the barkeeper, have their locations indicated by labeled circles. In the following when
refering to locations in the scenario, the labels will be used for the noncontrolled NPCs, so

13

14 comparison

Patron
Barkeeper

R1 R2 R3 R4

Figure 3.2: The scenario from Figure 3.1 viewed from above.

that Patron will refer to the patron’s location and Barkeeper the barkeeper’s. However, the
shorter Bar will be used interchangeably with Barkeeper.

Likewise, R1 through R4 will be used to refer to the rooms and a general location inside
them. Additionally, room locations will be postfixed to indicate a location outside or inside
the room. For instance, R1I is the location just inside R1 and R1O is the location just outside
R1.

The general properties of the scenario adhere to the restrictions previously stated in
chapter 2 for the model that classical planning relies on. The scenario is fully observable
to the NPC with some subtle restrictions however. For instance, the four doors all have
a property called locked which only return the actual boolean value indicating whether
the door is locked or not if the NPC has attempted to open the door. If this has not been
attempted, locked will return false. The scenario is also completely static, in the sense that
neither the barkeeper, the patron or any other object in the scenario can make changes to
the scenario.

3.1.1 Unity 3D

Unity 3D (Unity), is a game development software tool, complete with a game engine,
graphical environment editor, scripting support etc. It is made available in a professional
and a standard version, the latter being free to use.

Unity is very popular among indie game developers. Especially a lot of games developed
for handheld platforms, such as iPhone and Android, utilize Unity. More ambitious cross-
platform games such as Interstellar Marines by danish developer Zero Point Software, also
utilizes Unity [20]. Thus, we are able to show the integration of our BT framework in a
current and commercially used game engine.

Because of the graphical environment editor, we are able to implement the scenario
without spending too much time learning the workings of a game engine.

Unity utilizes Mono for scripting support. Thus, according to Mono’s compatibility with
.Net [11], scripting in Unity is almost fully .Net 3.5 compliant. This is one of the main
features as to why Unity was chosen. Given that our BT framework is written in C#, we are
able to integrate it directly into Unity. Furthermore, using MonoDevelop as the script editor,
it is possible to also directly debug Unity scripts with MonoDevelop, which has proven to
be of great help during the integration of our BT framework.

Unity has also previously been used in acadamic settings. Most notably the engine was
used in a master thesis for implementation and testing of BTs with a framework written in
C# [7].

Our implementation of BT is connected to Unity by including a Dynamic Link Library (DLL)
file containing the entire framework. The next step is then to create the scenario specific BT

3.2 comparison of behavior trees 15

nodes which act as the interface between the framework and the scenario. In Figure 3.3 the
connection between Unity and the BT framework is illustrated.

UnityUnity

Scenario

NPC

I
n
t
e
r
f
a
c
e

BT Framework

Figure 3.3: Overview of Unity and the BT framework.

3.2 comparison of behavior trees

To compare BTs with scripting we will describe a basic behavior that will be implemented
both as a script and as a BT and then evaluate the two approaches. We will then describe
two extensions to this basic behavior. The first extension will be comparing the approaches
on modularity while the second extension will compare the approaches on both select-
ive behavior and modularity. The comparisons are made in the scenario as described in
section 3.1.

3.2.1 Basic Behavior

This is the basic behavior that we will use for the first comparison and as the base for the
two extensions.

Description of behavior

This basic behavior will make the NPC run from Start to Bar. Afterwards it will run to
the Patron. After the Patron it will go to R3O and open the door. It will run to the back
wall and then back out of the room and back to Start location. The behavior then restarts
performing the same sequence of actions again. In Figure 3.4 this behavior is illustrated.

Patron
Barkeeper

1

2

3

4

56

7

Figure 3.4: The basic behavior illustrated in the scenario.

16 comparison

Script

In Listing 3.1 the basic behavior is implemented as a script. Here NPC refers to the NPC

executing the behavior. A few methods implemented on the NPC object are used in the
script. Their meaning is self-explanatory. An if clause construct is used to verify the NPC’s
current location and how to act onwards.

1 i f (NPC . IsAtPosition (Start) && NPC . State == Idle) {
2 NPC . Run (Bar) ;
3 }
4 e l s e i f (NPC . IsAtPosition (Bar) && NPC . State == Idle) {
5 NPC . Run (Patron) ;
6 }
7 e l s e i f (NPC . IsAtPosition (Patron) && NPC . State == Idle) {
8 NPC . Run (R3O) ;
9 }

10 e l s e i f (NPC . IsAtPosition (R3O) && NPC . State == Idle) {
11 NPC . OpenDoor () ;
12 NPC . Run (R3) ;
13 }
14 e l s e i f (NPC . IsAtPosition (R3) && NPC . State == Idle) {
15 NPC . Run (Start) ;
16 }

Listing 3.1: The basic behavior from Figure 3.4 as a script.

Behavior Tree

Run
(Bar)

Run
(Patron)

Run
(R3O)

Run
(R3)

Run
(R3O)

Run
(Start)

OpenDoor

Figure 3.5: Behavior Tree for the basic behavior from Figure 3.4.

Figure 3.5 shows the BT that implement the basic behavior defined above. Each Run node
is given a parameter which is a location in the scene. Looking at the figure it is easy to
see that this BT will perform the intended behavior which is also proven by running the
scenario with an NPC controlled by the BT.

Evaluation

From a construction point of view it was fast and easy to build the tree as it was a matter of
using the Run node and give it as parameter the desired location. The OpenDoor relies on
the NPC being at the location of a door to work. This is guaranteed by the success of the
node Run(R3O) which is the location outside the door of room R3.

Appart from the apparant difference in visual representation, there are some key differ-
ences between the BT and the script. In scripting a method to check the current position is
used to keep track of the NPCs progress with the behavior. This introduces a great deal of
redundancy. The location checks are performed implicitly as part of the success of the action

3.2 comparison of behavior trees 17

nodes in the BT. Furthermore, locations are not used to keep track of the NPCs progress with
the behvaior, and the semantics of a sequence node is instead utilized for this.

There is no noticeable problems with either the script or BT implementation and they
perform the intended behavior.

3.2.2 Extension One

This behavior is extended from the basic behavior and will be used for the second compar-
ison where the focus is modularity.

Description of behavior

The behavior extends upon the basic behavior by injecting a sequence of actions right before
the basic behavior returns to Start. The sequence of actions will make the NPC run to room
R3’s door and open it. If it is locked it will unlock it and open the door. It will run into the
room and close the door and then run to R3. After this it will run back to R3I and open
the door and run to R3O and close the door again. It will then resume the basic behavior
and run to Start. Once at Start, the behavior will restart performing the actions again. In
Figure 3.6 this behavior is illustrated.

Patron
Barkeeper

1

2

3

4

56

78

910

11

Figure 3.6: The first extension to the basic behavior.

Script

The script seen in Listing 3.2 only includes what is an extension to the basic behavior. Unlike
the compact representation of BTs where we are able to illustrate the complete behavior,
including the entire script in the listing only further complicates the interpretation for the
reader. Once again the invoked methods on the NPC object are self-explanatory.

1 e l s e i f (NPC . IsAtPosition (R3) && NPC . State == Idle) {
2 NPC . Run (R1O) ;
3 }
4 e l s e i f (NPC . IsAtPosition (R1O) && NPC . State == Idle) {
5 i f (! NPC . GetClosestDoor () . open) {
6 i f (! NPC . GetClosestDoor () . locked) {
7 NPC . OpenDoor () ;
8 }
9 i f (! NPC . GetClosestDoor () . open) {

10 NPC . UnlockDoor () ;
11 NPC . OpenDoor () ;
12 }
13 NPC . Run (R1I) ;
14 } e l s e {

18 comparison

15 NPC . CloseDoor () ;
16 NPC . Run (Start) ;
17 }
18 }
19 e l s e i f (NPC . IsAtPosition (R1I) && NPC . State == Idle) {
20 i f (NPC . GetClosestDoor () . open) {
21 NPC . CloseDoor () ;
22 NPC . Run (R1) ;
23 } e l s e {
24 NPC . OpenDoor () ;
25 NPC . Run (R1O) ;
26 }
27 }
28 e l s e i f (NPC . IsAtPosition (R1) && NPC . State == Idle) {
29 NPC . Run (R1I) ;
30 }

Listing 3.2: The first extension from Figure 3.6 as a script.

Behavior Tree

Run
(Bar)

Run
(Patron)

Run
(R3O)

Run
(R3)

Run
(R3O)

Run
(Start)

OpenDoor
L

GoIntoRoom2

Figure 3.7: Behavior Tree for the first extension from Figure 3.6.

Figure 3.7 shows the extension of the basic behavior. The change is the inserted link node
which links to the BT shown i Figure 3.8. This clearly shows the adaptability of BTs. The
change in the behavior to go into room R3 is as easy as creating a BT that does this and then
inserting a link node that links to that tree. No other changes were needed to adapt the BT,
for the basic behavior, to the extended behavior.

In Figure 3.8 it is worth noticing the subtle detail that the BT will first attempt to open the
door. If this fails it will then try to unlock the door and then open it. This is achieved by
taking advantage of the semantics of both selector and sequence nodes.

Evaluation

This comparison clearly indicates the modularity of BTs compared to scripting. A link
node is utilized to include a complete behavior describing the actual extension. This could
however also have been wrapped inside a method in scripting, and a call to this method
would be analogous to the link node. However the inclusion of the sub-behavior appears
more elegant in the BT, where a single node was added to the basic behavior in order to
achieve the expected behavior. In the script it was necessary to alter the last clause of the
if control structure and move the line sending the NPC back to Start and insert it into the
extended script. This realocation of code in the script opens up to the possibility of making
mistakes when altering the basic behavior.

3.2 comparison of behavior trees 19

Run
(R2O)

Run
(R2I)

Run
(R2)

Run
(R2I)

Run
(R2O)

OpenDoor

OpenDoor

OpenDoorCloseDoor CloseDoor

UnlockDoor

GoIntoRoom2

Figure 3.8: Behavior Tree: GoIntoRoom2 linked in Figure 3.7.

The matter of opening the possibly locked door to room R2 is in the BT implemented by
using a selector node that first attempts to open the door and if this fails, it will try the
other child that first attempts to unlock and then open the door.

3.2.3 Extension Two

This is the last extension to the behavior that extends upon the first extension by adding
selective behavior.

Description of behavior

This behavior makes the NPC run, as in the two previous, to Bar and afterwards to Patron
and into room R3. After running out of room R3 the behavior must now select whether to
go into room R1 or R2. There is a probability of 0.5 for each possibility. Each choice makes
the NPC walk up to the door of the room and open the door. If the door is locked it unlocks
it and opens it. Afterwards it walks into the room and closes the door. It walks to the back
wall and then back to the door and opens it. Once the door is open it will walk out of the
room and close the door and return to Start. After completing the behavior it restarts. In
Figure 3.9 this behavior is illustrated.

Patron
Barkeeper

1

2

3

4

56

7a8a

9a10a

11a

9b10b

11b

7b

8b

Figure 3.9: The second extension to the basic behavior.

20 comparison

Script

Again, Listing 3.3 only includes what is extended compared to the basic behavior and
the first extension for the same reasons as discussed previously. The selective behavior is
achieved in the script by using a randomized double in the interval [0.0, 1.0] and use this
double to select between the two sub-behaviors.

1 e l s e i f (NPC . IsAtPosition (R3) && NPC . State == State . Idle) {
2 double tmp = rand . NextDouble () ;
3 i f (tmp < 0 . 5) {
4 NPC . Run (R1O) ;
5 } e l s e {
6 NPC . Run (R2O) ;
7 }
8 }
9 e l s e i f (NPC . IsAtPosition (R2O) && NPC . State == State . Idle) {

10 i f (! NPC . GetClosestDoor () . open) {
11 i f (! NPC . GetClosestDoor () . locked) {
12 NPC . OpenDoor () ;
13 }
14 i f (! NPC . GetClosestDoor () . open) {
15 NPC . UnlockDoor () ;
16 NPC . OpenDoor () ;
17 }
18 NPC . Run (R2I) ;
19 } e l s e {
20 NPC . CloseDoor () ;
21 NPC . Run (Start) ;
22 }
23 }
24 e l s e i f (NPC . IsAtPosition (R2I) && NPC . State == State . Idle) {
25 i f (NPC . GetClosestDoor () . open) {
26 NPC . CloseDoor () ;
27 NPC . Run (R2) ;
28 } e l s e {
29 NPC . OpenDoor () ;
30 NPC . Run (R2O) ;
31 }
32 }
33 e l s e i f (NPC . IsAtPosition (R2) && NPC . State == State . Idle) {
34 NPC . Run (R2I) ;
35 }

Listing 3.3: The second extension from Figure 3.9 as a script.

Behavior Tree

In Figure 3.10 we have made an extension of the previous BT. We have moved the link
node down as a child of a newly inserted probability selector node. The other child of the
probability selector is a link node that links to a BT that is identical to the BT GoIntoRoom2
except it will move the NPC into R1. The probability given in the above description of the
behavior is implemented on the probability selector by giving each child a probability of
0.5.

3.3 efficiency 21

Run
(Bar)

Run
(Patron)

Run
(R3O)

Run
(R3)

Run
(R3O)

Run
(Start)

OpenDoor

L

GoIntoRoom2

L

GoIntoRoom1

0.5 0.5

Figure 3.10: Behavior Tree for the second extension from Figure 3.9.

Evaluation

Implementing selective behavior is easy in BTs because of the selector node. As it is apparent
in the scripting implementation, it requires additional variables and "housekeeping" of
these to the achieve the expected behavior. However, if the chosen child of the probability
selector node were to fail, the probability selector would execute the second child, which is
not the intended behavior for this test. Scripting achieves this behavior correctly. Adding a
condition on the probability selector that would only allow it to execute a single child, will
alleviate this behavioral difference.

Were the intended behavior to change, from selective to simply going in to the rooms
in sequence, this will only require the probability selector node to be exchanged with
a sequence node. In scripting this change will however require a substantial amount of
restructuring and recoding.

A feature of BTs that were not used for this behavior, is the possibility of parameterized
BTs. It would have been possible to give the room as a parameter for the BT and then
implementing the nodes in such a way that they, given a room parameter, know which
location they reference. This would allow for the two link nodes to reference the same tree
but with different parameters thus further improving the modularity of the BT.

3.3 efficiency

To compare the efficiency of BTs and scripts we measured the difference in frames per second
(FPS) between the two. We chose FPS as a measurement as it is the most reliable performance
measure retrievable in Unity and if BTs cause a slowdown in the game engine, due to taking
longer to execute. It would be clearly visible as a drop in FPS, because if frames take
longer to execute, the fewer frames can be completed each second. During execution of the
comparisons we set each script and BT to execute its behavior 10 times.

We calculated an average FPS during these 10 iterations and in Table 3.1 it can be seen
that both BTs and scripts hold an FPS of around 64. The BTs are marginally slower in the
order of 1

10 of a percent. This is most likely caused by the recursive execution of nodes in
the BTs as the actions themselves are the same functions being called in both BTs and scripts.

We did not measure the memory consumption of each approach as it is clear, from the
implementation of the BT framework, that BTs will use more memory. Some of the reasons
for this is the use of classes which gives some overhead in the form of object headers etc.
and the memory used to store the BT XML file. However it is commenly known that modern

22 comparison

computers come with very large amounts of memory and most modern games will not use
the entire available memory thus leaving space for the BT framework.

Table 3.1: FPS comparison of scripting and Behavior Trees

Behavior Scripting (FPS) Behavior Trees (FPS) Delta (%)

Behavior 1 64.016 64.004 −0.02%

Extension 1 64.046 64.017 −0.05%

Extension 2 64.048 64.015 −0.05%

3.4 summary

With the scenario defined and a game engine chosen, the comparison of BTs and scripting
has been performed as expected, and thus we have come to several conclusions about
the differences between scripting and BTs. The comparison has shown both strengths and
weaknesses between the two approaches.

The basic behavior and the two proposed extension, shows the adaptability and reusability
of BTs. It was easy to change and extend the behaviors without having to make major changes
in the structure of the tree. This was not the case for scripting as there was a need for
making some changes in the original behavior to support the extensions.

When looking at the graphical representation of BTs versus the textual representation
of the scripts it is also easy to see that non-programmers may find it harder to interpret
scripted AIs. The graphical representation of BTs gives a fast overview of the intended
behavior through the easily understandable construction blocks. The only problem that can
be present here is if the game developers construct action nodes that perform actions in the
game environment with effects that are not easily comprehensible.

We saw however that in extension two the intended behavior required that the NPC had to
make a choice of going into one room or the other. This behavior was not correctly attained
in the BT as this would require a custom condition on the probability selector node which
would override the normal execution flow of the node.

4
E X T E N D I N G B E H AV I O R T R E E S

We propose a planning architecture that can provide game developers with a system for
defining goals for NPCs and components that solve these goals. Before explaining goals,
components and the planning system we first need to look at three basic components:
preconditions, effects and the world state.

4.1 preliminaries

Before diving into the actual planning we will first need to define the basics of the planning
architecture.

4.1.1 Preconditions, Effects and the World State

A precondition is a boolean expression that can be evaluated to true or false. Preconditions
can be satisfied implicitly by the World State or by the expected effect of a component when
we use them in planning. Upon execution the preconditions must be satisfied by the world
state. If a precondition, that during planning was satisfied by an effect of a component, is not
satisfied upon execution then a discrepancy has occurred. This means that the component
did not have the expected effect and thus we must trigger a replanning of the current goal
to accommodate.

An effect is an expected change in the world state after the execution of the component
having said effect. The satisfaction of preconditions by effects and the world state can be
represented by the following function where P is the set of preconditions and E is the set of
effects:

satis f ied(P, E) =

{
true if P ∩ E = P

f alse if P ∩ E 6= P
(4.1)

In Equation 4.1, E can be replaced by the world state. The world state includes all the
preconditions from all components and goals that at the current time are satisfied. We
denote the world state by sw, and this is how we introduce states to the otherwise stateless
BTs.

Note that our definition of E does not differentiate between negative and positive effects,
like it is seen in classical planning with e f f ect−(a) and e f f ect+(a) of an action a. Now,
if the current state holds the precondition ¬DoorOpen, and we use an component with
DoorOpen ∈ E we set the precondition’s value to true in the resulting state.

4.1.2 Goal

To explain what the planning system, described below, revolves around, we first define
what a goal in the planning architecture is. The planning system uses goals to define what
to plan for. The planning system is invoked by giving a goal to achieve. It will first find a
decomposition of the goal that is relevant and then plan the sequence of components that
will take the game environment from the initial state, sw0 ,to a state, swi, where the goal is
achieved. The satisfaction of a goal is defined by its set of preconditions.

23

24 extending behavior trees

Definition 4.1 – Goal
A goal G consists of a set, P, of n preconditions and a set, D, of tuples representing
the decomposition of the goal:

- G = (P, D)

- P = {p1, p2, . . . , pn}

- D = {〈G1, G2, . . . Gm〉, . . . , 〈G1, G2, . . . Gk〉}

A goal G is satisfied if and only if:

- p1 ∧ p2 ∧ · · · ∧ pn = TRUE

A goal is as defined in Definition 4.1. The set of decompositions, D, can be used to represent
a tiered tree of goals and their decomposition. The tiering is possible due to one very
important definition. A goal cannot use another goal from its own tier as a subgoal. This
will make the goal of a higher tier than that of the goal it includes. It is allowed for all
higher tier goals to access lower tier goals. That is, it is allowed to use goals that are not
only in the tier immediately below the goal but also from lower tiers. The intuition behind
allowing goals to be decomposed into multiple goals is simple. It allows the game developer
to guide the planning through some desired goals, instead of just allowing the planner to
plan for one single goal.

This differs somewhat from the definition of a goal in classical planning. Recall that a
planning problem P is defined as a triple (Σ, s0, g). That is, in classical planning we plan
for a single goal g. Consider now our definition of a goal, where it is decomposed into e.g.
〈G1, G2〉. This is a sequential ordering of the goals G1 and G2. In classical planning we could
solve this by the two planning problems P∞ = (Σ, s0, G1) and P∞ = (Σ, G1, G2).

Effectively, our goal decompositions relaxes on the restriction in classical planning on
restricted goals. Figure 4.1 shows an example of the decomposition graph.

Figure 4.1: Simple Goal with three decompositions, each containing three goals

4.1.3 Components

The architecture has a library of components that can be used for solving goals, and they
relate closely to actions in classical planning but with some modifications. This will come
apparent in the following. The components are BTs that have been constructed to have some
effect in the game environment and this may also lead to a set of preconditions the must be
satisfied before that component can be used. The effects of one component can satisfy the
preconditions of another component thus allowing the components to follow each other in
sequence. The effects of a component can also satisfy a goal, as defined above, and this is
used to find the sequence of components that may solve a selected goal or sequence of goals.
It is not required that it must satisfy all preconditions of a goal or component but at least

4.2 planning 25

one, as opposed to what was earlier described. Any remaining preconditions will be moved
to the node in the search graph that was selected as we eventually must satisfy them.

Definition 4.2 – Component
A component is a four-tuple (P, B, C, E) where:

- P = {p1, p2, . . . , pn}

- B : is a behavior tree

- E = {e1, e2, . . . , em}

- C = |E| : is the integer cost of using the component

Definition 4.2 shows that a component consists of a set of precondition that may be empty
and must be satisfied for the component to work, a BT which is the logic of the component.
Also part of the definition is an integer cost of using the component which is used to guide
the planning and a set of effects that define which preconditions in the world state are
expected to be satisfied after the component has finished executing.

The selected components that solve a given goal make up a branch in a virtual BT that
we describe later. The branch consists a sequence node with link nodes referencing all
components in the selected sequence of components.

4.2 planning

The planning system runs in two phases: the goal decomposition phase and the component
planning phase. Each phase has a distinct effect in the planning system and can be tweaked
to provide alternate planning outputs.

4.2.1 Goal Decomposition

The first phase, the goal decomposition phase, has the purpose of making the the goal or
sequence of goals diverse to make the AI using the architecture act more diverse. This phase
relies heavily on Entropy. Entropy describes the unpredictability of a variable and can be
used as a measurement to increase the diversity of an AI. One of the more well known types
of entropy is the Shannon Entropy as described in [19]. Shannon entropy revolves around
the function H(X) where X is the discrete random variable with n possible outcomes. The
function can be represented as:

H(X) = −
n

∑
i=1

p(xi) logb(p(xi)) (4.2)

Here p(xi) is the probability of outcome xi for variable X and b = n. This function will
return its highest value (1) if for all xi, p(xi) = 1

n and its lowest if all xi = 0 but one
xi = 1. Intuitively this makes sense because if the probability distribution of the outcomes
is uniform then there is maximum uncertainty as to which outcome is expected thus giving
maximum entropy. In the other case there is no doubt that the variable will always have the
outcome with probability 1 thus there is no uncertainty giving minimum entropy.

In the planning architecture we use a simplified calculation that gives a similar result.
We select goals solely on the amount of times the goal has been picked as part of the goal
sequence. All goals start with a selected value of 1 to allow for the discounted entropy
described below.

26 extending behavior trees

The planning system allows for two different approaches to selecting a goal decomposi-
tion:

- Max Entropy (ME)

- Max Discounted Entropy (MDE)

We will now discuss these two approaches to goal decomposition and their proposed
algorithms.

Max Entropy

Algorithm 1 shows the ME decomposition algorithm. The goal that we are determining
whether to decompose or not is used as initial values for the loop. We assign i with the
goals number of times selected. This variable is used to determine if a decomposition has
a lower number of times selected and thus is more ideal to use. sel is the set containing
the selections that currently have the lowest number of times selected. Initially it is empty.
We run through all possible decompositions of the initial goal and if the number of times
selected is lower than the current lowest the set is overwritten and i is set to the lowest. If
the number of times selected is the same as the current lowest the decomposition is added
to the set. If number of times selected is higher than the current lowest the decomposition is
ignored.

Algorithm 1 Max Entropy decomposition selection

1: i← g.TimesSelected
2: sel ← {ε}
3: for k = 0→ g.Decompositions.Count do
4: if g.Decompositions[k].TimesSelected < i then
5: sel ← {k}
6: i← g.Decompositions[k].TimesSelected
7: else if g.Decompositions[k].TimesSelected == i then
8: sel ← sel ∪ {k}
9: end if

10: end for
11: if |sel| == 0 then
12: return g
13: else
14: if |sel| == 1 then
15: return sel[0]
16: else
17: return RandomSelect(sel)
18: end if
19: end if

Once all decompositions have been checked we check whether sel has a length of 1
and return the single element in the set. If the length is 0 we return the initial goal as no
decompositions had a lower number of times selected. If there are more than 1 elements in
the set we randomly select on of the elements and return it.

It is easy to see that this will always go towards having a uniform distribution of the times
selected as we always look for the possible selections that have been selected the least. If for
any seli, selj ∈ g ∪ g.Decompositions, that is for any two goals or decompositions in the set

4.2 planning 27

of the goal and its decompositions, it holds that seli.TimesSelected = selj.TimesSeleted then
the probability distribution of the possible outcomes is uniform. This is because probability
can be calculated as m

n where m is the number of times the outcome has occurred and n is
the total number of outcomes. As an example if three different outcomes are possible and
each has occurred 3 times then 3

9 = 1
3 for each outcome giving a uniform distribution.

Max Discounted Entropy

MDE uses a slightly different method to calculate the effective number of times selected
than ME. The algorithm is shown in Algorithm 2. With MDE we recognize that some goals
or decomposition may be more desirable than others. This desirability can of course change
over time or as a result of a change in the game environment.

Algorithm 2 Max Discounted Entropy decomposition selection

1: i← g.TimesSelected ∗ g.Discount
2: sel ← {−1}
3: for k = 0→ g.Decompositions.Count do
4: if g.Decompositions[k].TimesSelected ∗ g.Decompositions[k].Discount < i then
5: sel ← {k}
6: i← g.Decompositions[k].TimesSelected
7: else if g.Decompositions[k].TimesSelected == i then
8: sel ← sel ∪ {k}
9: end if

10: end for
11: if |sel| == 0 then
12: return g
13: else
14: if |sel| == 1 then
15: return sel[0]
16: else
17: return RandomSelect(sel)
18: end if
19: end if

To allow for this desirability we introduce a discount factor, γ, on goals and decomposi-
tions. This discount value is bound by the following γ ∈ (0, 1]. The desirability of the goal
or decomposition is then defined by how low the discount value is; the lower the discount
value the higher the desirability.

The algorithm for selecting goals and decompositions based on MDE is the same as for ME

with the exception that the number of times selected, used for lowest value, is multiplied by
the discount factor to give a different effective number of times selected.

4.2.2 Component planning

Once a sequence of goals has been selected it is time to plan how to achieve each goal while
minimizing the impact on the environment explained below. Each goal is planned from
the first goal in the goal sequence to the last. The objective of planning a goal is to find a
sequence of components that will take the NPC from the state of the world to the state of
the world where the goal is satisfied. This immediately poses a problem as BTs are stateless.

28 extending behavior trees

This is solved by creating a world state object which contains all preconditions of all
goals and components that currently hold, as described previously. We then check each
precondition at the time of starting the planning. We plan from the first goal in the sequence
of goals to this world state. Once a valid sequence of components has been found we apply
the effects of the components to the world state object and then use the modified state object
for planning the next goal in the sequence and repeat this process for each goal.

To find a sequence of components that solve a goal we use the A* search algorithm from
section 2.3 to find a path backwards from the goal to the current or expected world state.

There is no explicit directed graph to search through but instead we construct a graph
backwards from a node that has preconditions of the goal. The objective of the search is
then to reach a node whose preconditions are contained in the current or expected world
state. For the search we utilize an A* search algorithm.

At any node in the graph, we find all components in the component library that satisfy at
least one of the preconditions of the node. These components will form the edges in the
search graph. A new node is added to the search graph for each component. These new
nodes each contain the union of the component’s preconditions and any preconditions that
the component did not satisfy from the previous node. The edge from the new nodes to the
current node reference the component that was selected. This process is repeated until we
find a node whose preconditions are contained in the current or expected world state.

To compare this to classical planning from chapter 2, the node containing the preconditions
of the goal can be seen as a goal state in a state-transition system. The node whose
preconditions are contained in the world state can be seen as s0, the initial state in the
state-transition system. Components are equal to actions in the state-transition system.

The A* search algorithm relies on a function that calculates the current cost of the path
chosen plus a heuristic for how much it will cost to go from the current node to the goal
node, in our case the world state node. The function is defined as:

f (n) = h(n) + g(n) (4.3)

This requires us to define the two functions g(n) and h(n).
To define g(n) we use the cost of each component. The cost is defined as the number of

effects the component has, as previously mentioned. The more effects the higher the cost.
The reason for selecting the number of effects as the cost of a component is that we want to
leave as little an impact on the game environment as possible. We want to minimize the
effects as this could, although we do not account for it, have a negative effect on later plans.

The definition of h(n) is more complicated. As defined in the general A* algorithm the
heuristic function must be admissible, meaning that it must never overestimate. To make
the function admissible we define it as:

h(n) = |Pn − (Pn ∩ Ps)| (4.4)

Where Pn is the set of preconditions of node n and PS is the set of preconditions that the
world state contains. This function calculates the number of preconditions that are in Pn

that are not in PS and thus still need to be satisfied. We use this as the value of the heuristic
function. The relates to the approach in GOAP [13]. The intuition behind this is that the
fewer preconditions that still are not satisfied by the world state the fewer effects we need
to find in the component library which also relates to g(n) as we work to minimize the
needed effects. The function never overestimates as we will necessarily need a sequence of
components that has h(n) effects to satisfy the preconditions at the current step.

Our definition of the h(n) is also consistent. From section 2.3 consistency requires that
h(n) is not greater than the cost of using the component c to go from n′ to n plus h(n′).
Observe that the cost of c is at least the number of preconditions of n that we satisfy and

4.3 implementation 29

that h(n′) is at least the remaining number preconditions of n that c did not satisfy. This
means that the minimum value of cost(c) + h(n′) is h(n).

The success or failure of the planned sequence of components can now be defined. If the
sequence was successfully executed and the goal is satisfied, the sequence was successful.
If the sequence was successfully executed and the goal was not satisfied something went
wrong and a re-planning is triggered. If re-planning is triggered and no plan can be found
the goal is no longer relevant.

4.3 implementation

In Figure 4.2 the syntactical implementation of the planning architecture in BTs is done
by using a single node, the Planning node. This implementation was inspired by the
implementation of the query node in [3] as this approach has a very little impact on the
general BT structure. Also, we believe that the planning node allows us to maintain the
advantage identified in chapter 3. This node uses a single goal written below it and uses the
planning system to plan how to achieve the goal. The planning node is similar to the link
node in the sense that it too cannot have any children and that it uses a BT internally.

The status of the node is defined by the virtual BT. If the virtual BT succeeds, the node
succeeds. If the virtual BT fails a re-plan is triggered. If no plan can be found the node
fails. As described previously the planning system will select a sequence of goals and a

Figure 4.2: Node syntax for the Planning Node.

sequence of components solving each goal in the sequence. This translates very nicely to a
BT structure. Figure 4.3 shows a general model of the internal, or virtual, BT that is generated
and used inside the planning node. It has a general structure of first a sequence node as root
with a child for each of the goals in the selected sequence of goals. Each child is a sequence
node with a child for each component for solving the goal. The leafs in the virtual BT are
link nodes that link to the respective BT that the component references. The planning system

L L L L

Goals

Components Components......

......

Figure 4.3: Generic structure of the virtual BT used internally in the planning node.

has not been implemented with focus on performance but rather with focus on showing
that it is possible to utilize planning in BTs in an easy and sensible way. This means that the
planning system will be evaluated with main focus on showing that it works and with less
focus on actual efficiency.

30 extending behavior trees

To show what the extension with planning does to the overview of Unity and the BT

framework, we have updated the Figure 3.3 from subsection 3.1.1. This change is shown in
Figure 4.4. The BT framework and the planning framework come in two DLL files that make
up the entire framework. The planning DLL is dependent on the BT DLL but the BT DLL can
be used alone. The DLLs are included in the code behind the Unity project and this way all
the required classes are available in the game environment. As we described in section 2.1

UnityUnity

Scenario

NPC

I
n
t
e
r
f
a
c
e

Framework

BT

Planning

Figure 4.4: Overview of Unity and the BT framework extended with planning.

we changed the syntax and semantics as well as the general execution of BTs compared to
the previous work done in [10]. The changes have not been fully implemented as we have
not moved conditions onto sequences, selectors, parallels and their child branches. As we
have not and will not need to use these in any of the tests in this report we chose to not
make those changes in the framework.

4.4 summary

This concludes the description of the architecture for goal decomposition and planning
that the planning node uses. We have described what preconditions, effects and the world
state are along with how these interact. Goals have been defined and related to precondi-
tions, effect and the world state. Components were described as BTs and how effects and
preconditions are set on each component in the library.

With all the above in place we described how the goal decomposition works with both
ME and MDE. Once a goal decomposition is selected the actual planning of how to achieve
each goal was initiated by using an A* search from the goal, through components in the
component library, to the world state.

Finally we described how this affected the execution of the initiating planning node and
what triggers a re-planning.

5
E X P E R I M E N T S

The planning architecture has now been explained and we will present experiments that
will demonstrate the different components of the architecture and how they work compared
to static BTs generating similar behavior. When we use the word static about the behaviors
in the following experiments we refer to the fact that these behaviors are all predefined.
Even though they contain random elements in the form of probability selectors the outcome
of each choice of is still static.

During the experiments we use the scenario as it is defined in section 3.1.

5.1 experiment 1

Description

In this experiment we demonstrate the ME goal decomposition algorithm. The behavior that
will be run will make the NPC run from Start to Bar, then to Patron and finally back to
Start. The experiment is designed so that the entropy measured will be based on which
of the three actions, walk, run and teleport, the NPC chooses when moving to one of the
location, thus we expect to see a uniform distribution between the possible selections. The
experiment will run for 60 iterations to allow an adequate dataset to base our conclusions
on.

Static Behavior

Bar Patron Start

Sequence

RunWalk Teleport Run Walk Teleport Run Walk Teleport

0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

Figure 5.1: Static behavior for Experiment 1.

The static behavior, as shown in Figure 5.1, illustrates a simple BT consisting of a single se-
quence node as the root and with three probability selectors as its children. Each probability
selector will be handeling how to get to each location. The probability selectors have three
children each, one for each of the possible movement actions. The children have a uniform
probability of 0.33 but due to implementation we will be setting the last, Teleport, to 0.34.

31

32 experiments

Planning Behavior

The planning based BT is built by using a single sequence node as the root of the tree. As its
children are three planning nodes, each with a goal of moving to one of the three waypoints.
Each goal has three possible decompositions, containing a single goal that describe exactly
how to perform the move for achieving the goal. The goal graph for one of the goals is
shown in Figure 5.2. The graph is identical for the two remaining goals and can be seen in
Appendix C. Each of the three decompositions have a single component in the library that
can satisfy it and thus also the primary goal.

Name: RunToWPBar

Preconditions: {ε}
Behavior Tree:

Run(WPStart)

Effects: {AtBar ∧ ¬AtStart ∧ RanTo}
Cost: 3

MoveBar

WalkBar RunBar TeleportBar

Figure 5.2: Part of the goal decomposition graph for Experiment 1.

Evaluation

Each of the two approaches performed the expected behavior with the exception of the
planning behavior’s move goal, e.g. MoveBar, allowing the planning BT to randomly select
one of the three movement actions to solve it. To illustrate the difference between the
probability selector and the goal decomposition algorithm’s ability to perform the actions
in an, as close to, uniform way, we show graphs that indicate how close to uniform the
selections are made. Note that the graphs show the probabilities on the y-axis and number
of selections on the x-axis.

5.1 experiment 1 33

Figure 5.3: The graph for the static behavior’s selections of movement to Bar.

Figure 5.4: The graph for the planning behavior’s selections of movement to Bar.

Figure 5.3 and Figure 5.4 show the actual probabilities of each action or goal at each of
the 60 selections. The straight dashed line is set at uniform distribution and thus the results
are expected to be close to or on the dashed line. As we only select on of the possibilites
each time there will be a little curve on the line. It is easy to see that the planning behavior
is able to stay consistently around a uniform distribution compared to the static behavior.

34 experiments

Figure 5.5: The graph for the static behavior’s selections of movement to Patron.

Figure 5.6: The graph for the planning behavior’s selections of movement to Patron.

Figure 5.5 and Figure 5.6 show the same tendencies as above, but for moving to Patron.
that the planning behavior is better at maintaining uniform distribution.

As with the above figures, Figure 5.7 and Figure 5.8 with results for moving to Start,
show that the uniform distribution is best maintained by the planning behavior. The reason
for this is because where the probability selector never remembers what it has done on the
last execution, the goal decomposition algorithm maintains a counter for each goal and
its decompositions. Based on this it can always select the goal or decomposition that best
maintains uniform distribution of total selections.

The results indicate that the ME algorithm is working as intended and will continue to
work towards a uniform distribution at each selection. Depending on the structure of the
goal graph this can give a much more controlled and accurate diversity of the NPC.

Looking at performance, there is not much of a difference between the two approaches.
The static behavior maintains an average of 64.07 FPS and the planning behavior maintains
64.08 FPS. The experiments can vary by 0.05 between experiments. This means that the
execution performance of the static approach and the planning approach is close to equal.

5.2 experiment 2 35

Figure 5.7: The graph for the static behavior’s selections of movement to Start.

Figure 5.8: The graph for the planning behavior’s selections of movement to Start.

5.2 experiment 2

Description

This experiment is similar to the previous experiment except instead of using the ME

algorithm we will be using the MDE algorithm. We want the NPC to use the Run action ten
times more often than the Walk action and the Teleport action twice as often as the Walk
action. Based on this we expect to see the number of selections of Run to be substantially
higher than the two others and Teleport to be higher than Walk. The experiment is again
run for 60 iterations to allow for enough data to be collected.

Static Behavior

The BT in this experiment is identical to the static BT in the previous experiment with the
exception that the probability distribution of the probability selectors has been changed. As

36 experiments

Bar Patron Start

Sequence

RunWalk Teleport Run Walk Teleport Run Walk Teleport

0.77 0.08 0.15 0.77 0.08 0.15 0.77 0.08 0.15

Figure 5.9: Static behavior for Experiment 2.

described above we want to favor Run the most, then Teleport and lastly Walk. We calculate
the probabilities by counting that each time Walk has been executed once, Run has to be
executed ten times and Teleport two times. This gives a total of 13 and thus the probability
of Walk is 1

13 = 0.08, Run is 10
13 = 0.77 and Teleport is 2

13 = 0.15. The corresponding BT can
be seen in Figure 5.9.

Planning Behavior

The goal structure and component library for this planning BT is the same as the previous
except we have added discount values to the move goals and their decompositions. An
example can be seen in Figure 5.10, and the full goal graph can be seen in Appendix C.

The move goal and the walk goal have a discount of 1.0. This is done not to modify the
number of times selected. The run goal has a discount of 0.1 meaning that its effective
number of selections is a tenth of the real number of times selected. This means it will be
chosen ten times as often as the walk and move goals. The teleport goal has a discount
of 0.5 making its effective number of selections half of the real number. This means it
will be chosen twice as often as the move and walk goals. Thus we achieve the intended
probabilities as described above. There is however one exception. The move goal has a
discount value of 1.0 and each of the components for that goal graph can solve it and thus a
random move action is selected roughly every 13th selection. This breaks with the described
behavior but it does not invalidate the experiment as the additional selection option for the
planned behavior does not affect how well it selects between them. In Figure 5.10 a part of
the goal graph is shown. This goal graph is identical for each of the three move goals.

Name: RunToWPBar

Preconditions: {ε}
Behavior Tree:

Run(WPStart)

Effects: {AtBar ∧ ¬AtStart ∧ RanTo}
Cost: 3

5.2 experiment 2 37

MoveBar

WalkBar RunBar TeleportBar

1.0

1.0

0.50.1

Figure 5.10: Part of the goal decomposition graph for Experiment 2.

Evaluation

As in the previous experiment both behaviors are performed as expected. Note that the
graphs show the probabilities on the y-axis and number of selections on the x-axis. The
Run action is selected substantially more than Walk and Teleport. And Teleport is selected
about twice as often as the Walk action.

Figure 5.11: The graph for the static behavior’s selections of movement to Bar.

Figure 5.11 and Figure 5.12 show the actual probabilities of each action or goal at each
selection for moving to Bar. There are now three dashed lines. The top dashed line is the
expected probability of the Run action and goal. The middle dashed line is the expected
probability of the Teleport action and goal and lastly the lowest dashed line is the expected
probability of the Walk action and goal, and the move goal. It is again easy to see that the
planning behavior consistently attempts to approach the intended probability values given
by the discounts. The static behavior also exhibits the same tendencies but is less successful
at consistently maintaining the intended probability distribution.

38 experiments

Figure 5.12: The graph for the planning behavior’s selections of movement to Bar.

Figure 5.13 and Figure 5.14 show the same tendency as above, but for moving to Patron.
The planning behavior attempts to get as close to the intended probabilities as possible and
does so successfully, while the static behavior is less consistent.

Figure 5.13: The graph for the static behavior’s selections of movement to Patron.

5.2 experiment 2 39

Figure 5.14: The graph for the planning behavior’s selections of movement to Patron.

As with the above figures, Figure 5.15 and Figure 5.16, show the same tendencies, but
now for moving to Start. The probability selectors are again performing less successfully
because theu do not keep a history of previous selections. They are only concerned with
current selection thus it is possible to select the same action several times in a row, even
though it has a low probability.

Figure 5.15: The graph for the static behavior’s selections of movement to Start.

The experiment shows that the MDE algorithm is working as we expect it to. As opposed
to the previous experiment we are now concerned with controlling more precisely each goal
and its decompositions. This gives a more defined control over the NPC and if this is e.g.
combined with a process that will change the discount values at run-time based on changes
in the environment this can be a very powerful way of managing the NPC behavior.

Performance wise we see the same tendency as in the previous experiment. The static
behavior maintains an average of 64.06 FPS and the planning behavior maintains an average
of 64.07 FPS. The difference is again so small that it is irrelevant due to a normal variation
of FPS between experiments.

40 experiments

Figure 5.16: The graph for the planning behavior’s selections of movement to Start.

5.3 experiment 3

Description

The purpose of this experiment is to demonstrate the A* search algorithm to find a com-
ponent sequence for solving a goal. We provide a single simple goal that is to move to R1
where the door is both closed and locked. We compare the planning approach with a static
BT that performs this behavior.

Static Behavior

The static behavior in this experiment is a modified version of a previously used BT. The
BT in question was used in chapter 3 and described the behavior of moving the NPC into a
room. We have modified which room is used and also the NPC should not in this case exit
the room again. The BT is shown in Figure 5.17

Run
(R1O)

Run
(R1I)

Run
(R1)

OpenDoor

OpenDoor

CloseDoor

UnlockDoor

GoIntoRoom1

Figure 5.17: Static behavior for Experiment 3

5.3 experiment 3 41

Planning Behavior

The planning behavior uses the single simple goal, of moving into room R1, as the primary
goal. This goal has no decompositions, so the decomposition algorithms are disregarded.
The interesting part here is the component library which is what the experiment is designed
to show. The component library for this experiment is shown in Appendix B. Below the
component RunToWPR1I is given as en example:

Name: RunToWPR1I

Preconditions: {DoorOpen ∧ AtR1O}
Behavior Tree:

Run(WPR1I)

Effects: {AtR1I ∧ ¬AtR1O}
Cost: 2

Evaluation

The experiments were performed with success by both the static and the planning behaviors,
as was expected. The static BT moved the NPC up to the door and using its sequential
selector it was able to first attempt to open the door, andwhen that failed, triedd its other
branch which included a UnlockDoor action followed by a OpenDoor action. These both
succeeded, making it possible for the NPC to move to the goal destination.

The planning behavior had a much more complex task at hand and we will describe here
which steps it took to createthe solution plan.

In the following please note that the circles refer to states in the search graph. The initial
circle is the goal, and is denoted by G. The world state node will also be shown, and is
denoted by sW . Text on the arcs define the component that will change the state from the
originating state of the arc to the target state. Recall that we use backward planning and the
arcs are directed accordingly. The text inside the circle defines the cumulative preconditions
at that node. Note that the h(x) and g(x) values from the A* search are also included at
each state.

AtR1
Door-
Unlocked
AtStart

Gsw

Figure 5.18: The preconditions of the world state and the goal

Figure 5.18 shows the goal and the world state for Experiment 3. The current world state
for the first planning attempt defines that the NPC is at Start and DoorUnlocked. The goal
requires the NPC to be at R1 to be satisfied.

42 experiments

AtR1AtR1I
¬DoorOpen

RunR1

g(x) = 0
h(x) = 1

g(x) = 2
h(x) = 2

G=

Figure 5.19: Expansion one of the A* search

In Figure 5.19 we see the first step of the search through the component library. The goal
is seen to the right with only one single component capable of solving it. The resulting state
is connected to the goal via the component RunR1. The new leaf node of the search graph
has two preconditions that need to be satisfied; AtR1I and ¬DoorOpen. They stem from
the component RunR1

AtR1

AtR1I

AtR1I
DoorOpen
¬DoorOpen

RunR1

RunR1I

CloseDoor

AtR1I
¬DoorOpen

g(x) = 2
h(x) = 2

g(x) = 0
h(x) = 1

g(x) = 3
h(x) = 1

Figure 5.20: Expansion two of the A* search

In Figure 5.20 the algorithm expands the state by finding components that can satisfy
the preconditions. This results in two candidates; CloseDoor and RunR1I. However the
RunR1I component must be discarded as it will generate a state that has two contradicting
preconditions, DoorOpen and ¬DoorOpen, and thus unreachable.

AtR1I
¬DoorOpenAtR1I CloseDoorDoorOpen

AtR1O
RunR1I

g(x) = 2
h(x) = 2

g(x) = 3
h(x) = 1

g(x) = 5
h(x) = 2

Figure 5.21: Expansion three of the A* search

We then attempt to expand the state before the CloseDoor component in Figure 5.21.
This state has a single precondition AtR1I, because the precondition of the CloseDoor
component and the component’s resulting state is the same. The expand finds a single
component able to satisfy the preconditions, namely the RunR1I component.

5.3 experiment 3 43

AtR1IDoorOpen
AtR1O

RunR1I

DoorOpen
AtStart

RunR1O

Door-
Unlocked
AtR1O

OpenDoor

g(x) = 3
h(x) = 1

g(x) = 5
h(x) = 2

g(x) = 7
h(x) = 1

g(x) = 6
h(x) = 2

....

Figure 5.22: Expansion four of the A* search

The current state is now defined by the preconditions of the RunR1I component, namely
DoorOpen and AtR1O. We expand this state in Figure 5.22. This gives two candidate
components; RunR1O and OpenDoor. Each will have one precondition that they cannot
satisfy from the current state. The states before the two components are added to the leaf
set with the preconditions of the components and the additional precondition that was not
satisfied.

DoorOpen
AtR1O

Door-
Unlocked
AtR1O

OpenDoor

¬Door-
Unlocked
AtR1O

Door-
Unlocked
AtStart

RunR1O

UnlockDoor g(x) = 5
h(x) = 2

g(x) = 6
h(x) = 2

g(x) = 7
h(x) = 2

g(x) = 8
h(x) = 0

....

Figure 5.23: Expansion five of the A* search

The leaf set now contains two nodes. Both states have an f (x) = 8 and we rely on
the implementation to select between them. We select the state before the OpenDoor
component. We expand it as shown in Figure 5.23. The states before the two candidate
components, UnlockDoor and RunR1O, are added to the leaf set.

44 experiments

RunR1O

g(x) = 6
h(x) = 2

g(x) = 8
h(x) = 0

sw
Door-
Unlocked
AtStart

Door-
Unlocked
AtR1O

=

Figure 5.24: Expansion six of the A* search

We examine the leaf set and find that the state before RunR1O component from expansion
5 is currently cheapest. Before we try to expand we always check to see if the current cheapest
node is satisfied by the world state. In Figure 5.24 we see that the world state satisfies the
state before the RunR1O component, as the preconditions of the state hold in the world
state from Figure 5.18. We now have a plan that is able to take the NPC from Start to R1 in
the scenario.

The planning system is however fooled by the fact that it thinks the door is unlocked
when in reality it is not. Thus when the NPC attempts to open the door, this component
fails. This causes the planning node to detect a failure and attempts to replan with the new
information that the door is locked. The planning sequence proceeds exactly as above with
the exception that a valid plan will be found by starting at the state before the UnlockDoor
component, as shown in Figure 5.23.The planning behavior now successfully enters the
room completing the goal. As with the previous experiments we looked at the speed at
which it was possible to execute the two approaches.

The planning behavior maintained an average of 57.79 FPS while the static behavior
maintained 58.33 FPS. This gives a slight performance advantage to the static behavior,
as expected. However the difference between the two is very small considering that the
planning behavior manages to do an A* search twice through the small component library.

Both FPS counts are lower than in the previous tests and this can be explained by the fact
that a lot of initializing is done when starting the scenario. This cost is more visible in an
experiment that runs for a short amount of time, as in Experiment 3, compared to the much
longer running experiments Experiment 1 and Experiment 2.

5.4 summary

We have now tested the two major parts of the planning architecture, the goal decomposition
algorithms and the component planning search and shown that they work in the scenario
presented.

The results show that the approach of using a two phased planning architecture can work
in conjunction with BTs using the planning node. The use of this single node, with a hidden
BT generated on runtime, made little intrusion in the overall readability of BTs as shown
in the expirements but it of course makes the AI more complex and harder to fully grasp.
With a larger scenario, e.g. a full game, the component library will be much larger and
the amount of goals and the complexity of the goal graph will be larger. This will make
it harder for designers to understand the capabilities of the AI but is in turn a powerful
tool for making the AI more diverse and compared to a static implementation as shown in
Experiments 1 and 2.

Experiment 3 showed that the planning architecture was able to make plans in a simulated
fully observable game environment. It also showed that the architecture is able to cope with
errors in the expected world state, e.g. the door was discovered to be locked, and replan
according to the new perception of the world. Thus showing adaptive behavior.

5.4 summary 45

One thing that shined through in all three experiments was that formulation of precondi-
tions and effects in relation to the environment proved difficult. The correct formulation
and implementation of all preconditions and effects is of very high importance as these
impact the correct functioning of the planning architecture. It will be necessary to improve
the preconditions and effects and how they are defined as further improvement of the
architecture.

6
C O N C L U S I O N

We hereby conclude this thesis by summing up the contributions and results found. The
purpose of this thesis has been to investigate and propose a possible extension of BTs with
planning while maintaining the advantages and strengths of the BT formalism.

In chapter 2 we presented the formalism of BTs, including both syntax and semantics,
used in our work. The formalism includes a brief discussion of some proposed changes to
the formalism compared to that used in our previous work on the subject. These changes
concerns condition and decorator nodes. We propose for condition nodes that they are
removed from the syntax and instead included on the other nodes in the syntax, while
maintaining their semantics.

We investigated the notion of planning and A* search, both on their own, to build
a notational foundation for the thesis, but also in relation to game AI and how these
approaches can be used in that context. Our look at related work revealed that planning
is a feasible approach to game AI, where examples of both STRIPS and HTN planning were
mentioned. This answers the subquestion from our problem statement on the feasibility of
using planning for game AI.

A comparison of BTs and scripting was carried out in chapter 3 to identify advantages
and disadvantages in the BT formalism. Our results indicates that BTs were comparable
performance wise to scripting, while offering the following advantages:

- Readability

- Modularity

- Reusability

We assume that the advantages hold for both programmers and non-programmers alike,
making it generally easier to utilize for game AI. With these advantages identified we have
a basis for investigating the impact of the proposed extension to BTs.

We described the extension to BTs in chapter 4, which is our proposed approach for
incorporation classical planning into BTs. We implemented a new node in the BT syntax
called a planning node. Connecting planning with BT through the use of a new node
construct ensures that we maintain the identified advantages of BTs. Though, the complexity
of the planning node and it’s semantics can be hard to interpret compared to the existing
nodes. The planning node allows both goal decomposition, through entropy, and planning
to achieve these goals with components using A* search.

The experiments carried out in chapter 5 were aimed at validating the expected function-
ality of the goal decomposition and component planning algorithms. Our results on the goal
decomposition algorithms show that the use of entropy ensures controlled diversity in the
goal decomposition compared to using a similar BT. Interestingly, the results also indicated
that the probability selector node is not guaranteed to adhere to the intended probability
distribution depending on the number of node executions taken into consideration. This is
a result of the inherent flaws with current randomization approaches. The final experiment
showed that the planning node is able to plan a sequence of components for the NPC to
execute, and initiate replanning if discrepancies to the expected world state are detected
during execution.

With the above summarization of the work conducted in our thesis, we now turn to the
main problem of our problem statement from section 1.1. To conclude, we have proposed

47

48 conclusion

a working approach that extends the notion of BTs with an adapted notion of classical
planning. Diversity is achieved in both goal decomposition through entropy, and component
planning. That is, although a planning node will always be statically defined with respect to
its location in a BT, the world state can differ between executions of the BT. This effectively
results in diversity in the constructed component plan. The goal decomposition also provides
diversity in the sense that the algorithms guarantee goal selection distribution to be either
uniform or discounted uniform.

6.1 future work

Though the implementation and testing succeeded there are still a number of things that
need further investigation. We will mention a few of those that we find to be the most
important.

Optimizing the planning algorithms

The planning architecture has not been implemented with focus on performance. This leaves
room for optimizing both the goal decomposition algorithms and the searching.

The goal decomposition algorithms run through the entire set of decompositions every
time. This could be avoided by sorting the list on the number of times selected as a general
solution. An even more ideal solution would be to keep a list of the goals that currently
lowest times selected values. Currently this is computed everytime.

There are also still a few corner cases where the planning algorithm cannot find a valid
plan, even though one exists. An example of this is if the planning algorithm cannot find a
valid component sequence for the chosen goal decomposition. The planning node will then
fail and not attempt to re-plan. There might however be another goal decomposition that is
solvable.

Another problem that needs a solution is the amount of time the planning needs to finish.
If a sufficiently complex goal needs to be planned the process of planning it might stretch
beyond the scope of a single game frame. What could be done to avoid this FPS slowdown,
is to pause the plannning, and reinitiate it the following game frame. This requires that
the chosen goal is decomposed to multiple goals, such that the planning can be naturally
paused as each of these goals have a solution plan. Thus the NPC can remain active although
the planning node has not found solutions for all goals. The general principle is described
in [5].

Save generated plans

Plans generated by the component search are currently not saved in any way. Meaning, if a
goal has to be solved again we do not remember the previous solution plan and need to
re-plan it. This is also related to the above section above on optimization.

It can also be used to control diversity. We could force the algorithms to attempt to
generate alternate plans instead of often reaching the same plan for the same goal. This
would be a matter of comparing the generated plans, which is just comparing the two BTs

generated. The matter of comparing the trees is easy and could be a good tool for controlling
the NPC.

6.1 future work 49

Adapting effects and preconditions

During the experiments in chapter 5 we discovered that the formulation and implementation
of preconditions and effects was harder than expected. One of the largest problems we found
was that some preconditions may be abstractions of other, both conjuctive and disjunctive
preconditions, which we in no way support.

To exemplify this, consider two components that interact with a door. These could
intuitivly have a precondition AtDoor. Now consider two components that move an NPC.
Each component moves the NPC to one side of the door, but the two locations are different.
Intuitivly both locations are at the door but the effect of the two components cannot solely
be AtDoor as it then would not be possible to distinguish which component moves the NPC

where. We would then need to add additional effects that define at which location the NPC

will be after executing the component.
Another solution to this is to allow preconditions to consist of other preconditions, as

described above. This would allow us to construct the precondition AtDoor as a disjunctive
precondition consisting of e.g. OutsideDoor and InsideDoor. The effect OutsideDoor of
one of the movement components is then enough to satisfy the precondition AtDoor.

It would also be a great improvement to allow preconditions and effects to be paramet-
erized e.g. replace AtR1 and AtR1I from the experiments with a single parameterized
precondition, AtLocation(x), where x could then be replaced by R1 or R1I. However, one
should be aware that allowing too high level of expressiveness in the preconditions can
have negative impact on both the decideability and complexity of planning [4, Chapter 3].

Further use for preconditions

With the addition of conditions on sequences, selectors, parallels and their children, in the
BT formalism, the preconditions of the planning architecture can be used for an additional
purpose. For each sequence node of components that solve a goal, each branch to the
corresponding link node, could have the component’s preconditions added as a condition.
This will allow a component to detect a discrepancy in the world state with respect to the
expected world state. A discrepancy could occur if the component, prior to the current
component, succeeded, but the world was not left in the expected state. It is then possible
to have the planning node fail and trigger a re-planning before attempting to execute a
component that cannot succeed as its preconditions are not met.

Large scale testing

The planning architecture has in this thesis only been tested on a simple scenario where
only one NPC was controlled and with a very small amount of possible actions. To further
investigate the viability of the approach it should be applied to a more complex scenario
with multiple NPCs and also with collaboration between them. The number of actions in the
environment should also be increased to increase the complexity of the possible behaviors of
the NPCs. This would also increase the number of possible goals and components allowing
for proper performance testing of the architecture.

A
S C R I P T S F O R C O M PA R I S O N

Note for the listing below that this.controller refers the NPC and is specific for Unity. The
listings show the exact implementation of the scripts in Unity. In chapter 3 some of the
implementation specific methods and object references were exchanged with something
more meaningful.

basic behavior

1 i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name == "

WPStart") . transform . position) && t h i s . controller . State == State . Idle) {
2 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPBar")) ;
3 }
4 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPBar") . transform . position) && t h i s . controller . State == State . Idle) {
5 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPPatron")) ;
6 }
7 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPPatron") . transform . position) && t h i s . controller . State == State . Idle) {
8 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR3O")) ;
9 }

10 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==
"WPR3O") . transform . position) && t h i s . controller . State == State . Idle) {

11 t h i s . controller . OpenDoor () ;
12 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR3")) ;
13 }
14 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR3") . transform . position) && t h i s . controller . State == State . Idle) {
15 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPStart")) ;
16 }

Listing A.1: The basic behavior as a script in Unity.

51

52 scripts for comparison

extension one

1 i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name == "

WPStart") . transform . position) && t h i s . controller . State == State . Idle) {
2 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPBar")) ;
3 }
4 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPBar") . transform . position) && t h i s . controller . State == State . Idle) {
5 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPPatron")) ;
6 }
7 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPPatron") . transform . position) && t h i s . controller . State == State . Idle) {
8 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR3O")) ;
9 }

10 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==
"WPR3O") . transform . position) && t h i s . controller . State == State . Idle) {

11 t h i s . controller . OpenDoor () ;
12 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR3")) ;
13 }
14 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR3") . transform . position) && t h i s . controller . State == State . Idle) {
15 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1O")) ;
16 }
17 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR1O") . transform . position) && t h i s . controller . State == State . Idle) {
18 i f (! t h i s . controller . GetClosestDoor () . open) {
19 i f (! t h i s . controller . GetClosestDoor () . locked) {
20 t h i s . controller . OpenDoor () ;
21 }
22 i f (! t h i s . controller . GetClosestDoor () . open) {
23 t h i s . controller . UnlockDoor () ;
24 t h i s . controller . OpenDoor () ;
25 }
26 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1I")) ;
27 }
28 e l s e {
29 t h i s . controller . CloseDoor () ;
30 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPStart")

) ;
31 }
32 }
33 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR1I") . transform . position) && t h i s . controller . State == State . Idle) {
34 i f (t h i s . controller . GetClosestDoor () . open) {
35 t h i s . controller . CloseDoor () ;
36 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1")) ;
37 }
38 e l s e {
39 t h i s . controller . OpenDoor () ;
40 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1O")) ;
41 }
42 }
43 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR1") . transform . position) && t h i s . controller . State == State . Idle) {
44 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1I")) ;
45 }

Listing A.2: The Unity script inplementing the first extension to Listing A.1.

scripts for comparison 53

extension two

1 i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name == "

WPStart") . transform . position) && t h i s . controller . State == State . Idle) {
2 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPBar")) ;
3 }
4 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPBar") . transform . position) && t h i s . controller . State == State . Idle) {
5 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPPatron")) ;
6 }
7 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPPatron") . transform . position) && t h i s . controller . State == State . Idle) {
8 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR3O")) ;
9 }

10 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==
"WPR3O") . transform . position) && t h i s . controller . State == State . Idle) {

11 t h i s . controller . OpenDoor () ;
12 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR3")) ;
13 }
14 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR3") . transform . position) && t h i s . controller . State == State . Idle) {
15 double tmp = rand . NextDouble () ;
16 Debug . Log (tmp) ;
17 i f (tmp < 0 . 5) {
18 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1O")) ;
19 }
20 e l s e {
21 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR2O")) ;
22 }
23 }
24 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR1O") . transform . position) && t h i s . controller . State == State . Idle) {
25 i f (! t h i s . controller . GetClosestDoor () . open) {
26 i f (! t h i s . controller . GetClosestDoor () . locked) {
27 t h i s . controller . OpenDoor () ;
28 }
29 i f (! t h i s . controller . GetClosestDoor () . open) {
30 t h i s . controller . UnlockDoor () ;
31 t h i s . controller . OpenDoor () ;
32 }
33 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1I")) ;
34 }
35 e l s e {
36 t h i s . controller . CloseDoor () ;
37 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPStart")

) ;
38 }
39 }
40 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR1I") . transform . position) && t h i s . controller . State == State . Idle) {
41 i f (t h i s . controller . GetClosestDoor () . open) {
42 t h i s . controller . CloseDoor () ;
43 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1")) ;
44 }
45 e l s e {
46 t h i s . controller . OpenDoor () ;
47 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1O")) ;
48 }
49 }

54 scripts for comparison

50 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==
"WPR1") . transform . position) && t h i s . controller . State == State . Idle) {

51 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR1I")) ;
52 }
53 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR2O") . transform . position) && t h i s . controller . State == State . Idle) {
54 i f (! t h i s . controller . GetClosestDoor () . open) {
55 i f (! t h i s . controller . GetClosestDoor () . locked) {
56 t h i s . controller . OpenDoor () ;
57 }
58 i f (! t h i s . controller . GetClosestDoor () . open) {
59 t h i s . controller . UnlockDoor () ;
60 t h i s . controller . OpenDoor () ;
61 }
62 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR2I")) ;
63 }
64 e l s e {
65 t h i s . controller . CloseDoor () ;
66 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPStart")

) ;
67 }
68 }
69 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR2I") . transform . position) && t h i s . controller . State == State . Idle) {
70 i f (t h i s . controller . GetClosestDoor () . open) {
71 t h i s . controller . CloseDoor () ;
72 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR2")) ;
73 }
74 e l s e {
75 t h i s . controller . OpenDoor () ;
76 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR2O")) ;
77 }
78 }
79 e l s e i f (t h i s . controller . IsAtPosition (waypoints . First<Waypoint >(wp => wp . name ==

"WPR2") . transform . position) && t h i s . controller . State == State . Idle) {
80 t h i s . controller . Run (waypoints . First<Waypoint >(wp => wp . name == "WPR2I")) ;
81 }

Listing A.3: The Unity script inplementing the second extension to Listing A.1.

B
C O M P O N E N T L I B R A R I E S F O R E X P E R I M E N T S

test 1 and 2:

Name: RunToWPBar

Preconditions: {ε}
Behavior Tree:

Run(WPStart)

Effects: {AtBar ∧ ¬AtStart

∧RanTo}
Cost: 3

Name: TeleportToWPBar

Preconditions: {ε}
Behavior Tree:

Teleport(WPStart)

Effects: {AtBar ∧ ¬AtStart

∧TeleportedTo}
Cost: 3

Name: WalkToWPBar

Preconditions: {ε}
Behavior Tree:

Walk(WPStart)

Effects: {AtBar ∧ ¬AtStart

∧WalkedTo}
Cost: 3

Name: RunToWPPatron

Preconditions: {ε}
Behavior Tree:

Run(WPBar)

Effects: {AtPatron ∧ ¬AtBar

∧RanTo}
Cost: 3

Name: WalkToWPPatron

Preconditions: {ε}
Behavior Tree:

Walk(WPStart)

Effects: {AtPatron ∧ ¬AtBar

∧WalkedTo}
Cost: 3

Name: TeleportToWPPatron

Preconditions: {ε}
Behavior Tree:

Run(WPBar)

Effects: {AtPatron ∧ ¬AtBar

∧TeleportedTo}
Cost: 3

55

56 component libraries for experiments

Name: RunToWPStart

Preconditions: {ε}
Behavior Tree:

Run(WPPatron)

Effects: {AtStart ∧ ¬AtPatron

∧RanTo}
Cost: 3

Name: TeleportToWPStart

Preconditions: {ε}
Behavior Tree:

Teleport(WPPatron)

Effects: {AtStart ∧ ¬AtPatron

∧TeleportedTo}
Cost: 3

Name: WalkToWPStart

Preconditions: {ε}
Behavior Tree:

Walk(WPPatron)

Effects: {AtStart ∧ ¬AtPatron

∧WalkTo}
Cost: 3

component libraries for experiments 57

test 3

Name: RunToWPR1O

Preconditions: {AtStart}
Behavior Tree:

Run(WPR1O)

Effects: {AtR1O ∧ ¬AtStart}
Cost: 2

Name: OpenDoor

Preconditions: {AtR1O ∧ DoorUnlocked}
Behavior Tree:

OpenDoor

Effects: {DoorOpen}
Cost: 1

Name: CloseDoor

Preconditions: {AtR1I}
Behavior Tree:

CloseDoor

Effects: {!DoorOpen}
Cost: 1

Name: UnlockDoor

Preconditions: {AtR1O∧!DoorUnlocked}
Behavior Tree:

UnlockDoor

Effects: {DoorUnlocked}
Cost: 1

Name: RunToWPR1I

Preconditions: {AtR1O ∧ DoorOpen}
Behavior Tree:

Run(WPR1I)

Effects: {AtR1I ∧ ¬AtR1O}
Cost: 2

Name: RunToWPR1

Preconditions: {AtR1I∧!DoorOpen}
Behavior Tree:

Run(WPR1)

Effects: {AtR1∧ ¬AtR1I}
Cost: 2

C
G O A L G R A P H S F O R E X P E R I M E N T S

MoveBar

WalkBar RunBar TeleportBar

MovePatron

WalkPatron RunPatron TeleportPatron

MoveStart

WalkStart RunStart TeleportStart

Figure C.1: Goal graph for experiment one in chapter 5.

59

60 goal graphs for experiments

MoveBar

WalkBar RunBar TeleportBar

1.0

1.0

0.50.1

MovePatron

WalkPatron RunPatron TeleportPatron

1.0

1.0

0.50.1

MoveStart

WalkStart RunStart TeleportStart

1.0

1.0

0.50.1

Figure C.2: Goal graph for experiment two in chapter 5.

D
S E A R C H G R A P H F O R T E S T 3

At
R1

At
R1

I
Do

or
Op

en
¬D

oo
rO

pe
n

Ru
nR

1

Ru
nR

1I

Clo
se

Do
or

At
R1

I
¬D

oo
rO

pe
ng(
x)

 =
 2

h(
x)

 =
 2

g(
x)

 =
 0

h(
x)

 =
 1

At
R1

I
Do

or
Op

en
At

R1
O

Ru
nR

1I

Do
or

Op
en

At
St

ar
t

Ru
nR

1O

Do
or

-
Un

lo
ck

ed
At

R1
O

Ope
nD

oo
r

g(
x)

 =
 3

h(
x)

 =
 1

g(
x)

 =
 5

h(
x)

 =
 2

g(
x)

 =
 7

h(
x)

 =
 1

g(
x)

 =
 6

h(
x)

 =
 1

¬D
oo

r-
Un

lo
ck

ed
At

R1
O

Do
or

-
Un

lo
ck

ed
At

St
ar

t

Ru
nR

1O

Un
loc

kD
oo

r

g(
x)

 =
 7

h(
x)

 =
 2

g(
x)

 =
 8

h(
x)

 =
 0

Figure D.1: Complete search graph for Test 3 in chapter 5

61

B I B L I O G R A P H Y

[1] M. Dyckhoff. Decision Making and Knowledge Representation in Halo
3. http://www.bungie.net/images/Inside/publications/presentations/

publicationsdes/engineering/nips07.pdf (Checked: 07-06-2011). Presentation.

[2] M. Dyckhoff. Evolving halo’s behaviour tree ai. http://www.bungie.net/images/

Inside/publications/presentations/publicationsdes/engineering/gdc07.pdf

(Checked: 07-06-2011). Presentation.

[3] G. Flórez-Puga, M. A. Gómez-Martín, P. P. Gómez-Martín, B. Díaz-Agudo, and P. A.
González-Calero. Query-Enabled Behavior Trees. IEEE Transactions on Computational
Intelligence and AI in Games, Vol. 1, No. 4:298–308, 2009.

[4] M. Ghallab, D. Nau, and P. Traverso. Automated Planning - Theory and Practice. Number
ISBN: 1-55860-856-7 in 1st Edition. Morgan Kaufmann, 2004.

[5] P. Gorniak and I. Davis. Squadsmart: Hierarchical Planning and Coordinated Plan
Execution for Squads of Characters. Proceedings of the Third Artificial Intelligence and
Interactive Digital Entertainment Conference, pages 14–19, 2007.

[6] H. Hoang, S. Lee-urban, and H. Muñoz-avila. Hierarchical plan representations for
encoding strategic game ai. In In Proc. Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE-05). AAAI Press, 2005.

[7] A. T. Holm and M. Bøgeskov. AI Modelling: Behavior Trees. Master’s thesis, De-
partment of Computer Science, AAU, https://services.cs.aau.dk/public/tools/
library/details.php?id=1275469049 (Checked: 07-06-2011), 2010.

[8] D. Isla. Handling Complexity in the Halo 2 AI. http://www.gamasutra.com/gdc2005/
features/20050311/isla_01.shtml (Checked: 07-06-2011), 2005.

[9] J.-P. Kelly, A. Botea, and S. Koenig. Offline Planning with Heirachical Task Networks
in Video Games. In In Proc. Artificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE-08). AAAI Press, 2008.

[10] S. Larsen, T. Olsen, K. Sejrsgaard-Jacobsen, L. H. Phan, and J. O. Groth. Applying
Behavior Trees to Starcraft AI. Technical report, Student project Aalborg University,
http://homes.student.aau.dk/jgroth07/Dat5.pdf (Checked: 07-06-2011), 2010.

[11] Mono. Compatibility - Mono. http://www.mono-project.com/Compatibility

(Checked: 07-06-2011), 2010.

[12] Monolith Productions. F.E.A.R. http://www.lith.com/Games/F-E-A-R- (Checked:
07-06-2011), 2005.

[13] J. Orkin. Agent Architecture Considerations for Real-Time Planning. In Artificial
Intelligence & Interactive Digital Entertainment (AIIDE-05). AAAI Press, 2005.

[14] J. Orkin. Three States and a Plan: The A.I. of F.E.A.R. Technical report, Monolith
Productions / M.I.T. Media Lab, Cognitive Machines Group, http://web.media.mit.
edu/~jorkin/gdc2006_orkin_jeff_fear.pdf (Checked 07-06-2011), 2006.

63

http://www.bungie.net/images/Inside/publications/presentations/publicationsdes/engineering/nips07.pdf
http://www.bungie.net/images/Inside/publications/presentations/publicationsdes/engineering/nips07.pdf
http://www.bungie.net/images/Inside/publications/presentations/publicationsdes/engineering/gdc07.pdf
http://www.bungie.net/images/Inside/publications/presentations/publicationsdes/engineering/gdc07.pdf
https://services.cs.aau.dk/public/tools/library/details.php?id=1275469049
https://services.cs.aau.dk/public/tools/library/details.php?id=1275469049
http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml
http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml
http://homes.student.aau.dk/jgroth07/Dat5.pdf
http://www.mono-project.com/Compatibility
http://www.lith.com/Games/F-E-A-R-
http://web.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf
http://web.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf

64 bibliography

[15] J. Orkin. Goal-Oriented Action Planning. http://web.media.mit.edu/~jorkin/goap.
html (Checked: 07-06-2011), 2010. Collection of resources about GOAP.

[16] R. Pillosu. Coordinating Agents with Behavior Trees. http://staff.science.uva.nl/
~aldersho/GameProgramming/Papers/Coordinating_Agents_with_Behaviour_Trees.

pdf (Checked: 07-06-2011). Presentation.

[17] S. Rabin. AI Game Programming Wisdom 3. Number ISBN: 1-58450-457-9 in 1st Edition.
Charles River Media, 2006.

[18] S. Russell and P. Norvig. Artificial Intelligence - A Modern Approach. Number ISBN:
0-13-207148-7 in Third Edition. Pearson, 2010.

[19] C. E. Shannon. A Mathematical Theory of Communication. The Bell System Technical
Journal, 27:379–426,623–656, October 1948.

[20] Z. P. Software. Interstellar Marines. http://www.interstellarmarines.com (Checked:
07-06-2011), 2009.

http://web.media.mit.edu/~jorkin/goap.html
http://web.media.mit.edu/~jorkin/goap.html
http://staff.science.uva.nl/~aldersho/GameProgramming/Papers/Coordinating_Agents_with_Behaviour_Trees.pdf
http://staff.science.uva.nl/~aldersho/GameProgramming/Papers/Coordinating_Agents_with_Behaviour_Trees.pdf
http://staff.science.uva.nl/~aldersho/GameProgramming/Papers/Coordinating_Agents_with_Behaviour_Trees.pdf
http://www.interstellarmarines.com

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Problem Statement

	2 Theory
	2.1 Behavior Trees
	2.1.1 Syntax & Semantics
	2.1.2 Changes to the Formalism
	2.1.3 Execution Flow

	2.2 Planning
	2.2.1 Classical Planning

	2.3 A* Search
	2.4 Related Work

	3 Comparison
	3.1 Scenario
	3.1.1 Unity 3D

	3.2 Comparison of Behavior Trees
	3.2.1 Basic Behavior
	3.2.2 Extension One
	3.2.3 Extension Two

	3.3 Efficiency
	3.4 Summary

	4 Extending Behavior Trees
	4.1 Preliminaries
	4.1.1 Preconditions, Effects and the World State
	4.1.2 Goal
	4.1.3 Components

	4.2 Planning
	4.2.1 Goal Decomposition
	4.2.2 Component planning

	4.3 Implementation
	4.4 Summary

	5 Experiments
	5.1 Experiment 1
	5.2 Experiment 2
	5.3 Experiment 3
	5.4 Summary

	6 Conclusion
	6.1 Future Work

	A Scripts for Comparison
	B Component Libraries for Experiments
	C Goal Graphs for Experiments
	D Search Graph for Test 3
	Bibliography

