
Applying Behavior Trees to StarCraft AI

DAT5, FALL SEMESTER 2010
GROUP D518A

DEPARTMENT OF COMPUTER SCIENCE

AALBORG UNIVERSITY
22ND OF DECEMBER 2010

Attack enemies
in sight

Move to
enemy Timer

Move
In

Range

Enemy
in

sight?

Enemy
in

range?

Attack
Enemy

Harass
enemy

Retreat

Title: Applying Behavior Trees to StarCraft
AI
Theme: Artificial Intelligence in RTS games
Project period: Dat5, fall semester 2010
Project group: d518a
Group members:

Søren Larsen

Jonas Groth

Kenneth Sejrsgaard-Jacobsen

Torkil Olsen

Long Huy Phan

Supervisor: Yifeng Zeng

Copies: 7
Number of pages: 70
Appendices: 2
Completion date: 22nd of December, 2010

The contents of this report are openly available, but publication (with reference to the source)
is only allowed with the agreement of the authors.
Additional material available on the attached CD.

Abstract:

We investigate the area of game AI with focus
on the video game genre of Real-Time Strat-
egy using StarCraft as test platform. We pro-
ceed to discuss different AI methods that have
an application in RTS games. We choose to
focus on behavior trees and present our im-
plementation of a behavior tree framework, for
implementing behavior trees, and an editor for
designing them. We test the framework by im-
plementing a set of behaviors described in the
report and finally conclude on the work done
by proposing new possibilities for further de-
velopment.

Preface

In this report we discuss the aspects of constructing an artificial intelligence (AI) for a computer game that
can provide the human opponent with an entertaining challenge, rather than showing off super-human
intelligence and decision making. Several aspects are important for this area, such as the techniques used
to create the AI, the performance of the AI, the computer game genre the AI is intended for and so forth.

We will describe some of the game mechanics of the selected game, StarCraft, but the reader is required
to have some basic knowledge of StarCraft such as the units and structures etc.

In Chapter 1 we discuss the different types of video game genres and select a genre that we want to
further investigate. We proceed to discuss key aspects of this genre and select a game for which we want
to develop an AI for. Chapter 2 gives a more in depth description of StarCraft and the game mechanics.
We also define the scenario we will be using in the rest of the report.

In Chapter 3 we introduce different methods for creating game AI. We also briefly comment on other AI
methods, such as learning and planning. We end the chapter by summarizing the discussed methods and
select one method for further use in the report.

Chapter 4 describes the framework and editor, for designing and implementing behavior trees, developed
as part of the report. In Chapter 5 we propose a set of behavior trees that make up a simple StarCraft
AI. The behavior trees are implemented in the designed framework and tested in Chapter 6. Finally we
conclude our work and propose possibilities for further work in Chapter 7 and Chapter 8.

The framework and the editor are available for testing on the CD enclosed with this report or by request
from the authors.

We would like to thank deathknight13579 and lowerlogic for providing the BWAPI framework used
for implementing AI’s in StarCraft and dpershouse for providing bwapi-mono-bridge and responding to
issues with his implementation.

i

Contents

Contents iii

1 Introduction 1
1.1 Video Games . 1
1.2 Strategy games . 3
1.3 Video Game Environment for This Project . 4
1.4 Project Purpose . 4

2 StarCraft: Brood War 5
2.1 Game Aspects . 5
2.2 Game Mechanics . 7
2.3 Full Game Scenario . 7
2.4 Scenario . 8
2.5 Brood War Application Programming Interface . 9

3 AI Methods 11
3.1 Scripting . 12
3.2 Finite State Machines . 14
3.3 Behavior Trees . 18
3.4 Additional Methods . 22
3.5 Evaluation . 25

4 Framework and Editor 27
4.1 Framework . 27
4.2 Editor . 36

5 Case Study 40
5.1 Behavior Tree: Strategy . 40
5.2 Behavior Tree: Attack and Scout . 41
5.3 Behavior Tree: Harass . 44
5.4 Behavior Tree: All In . 46
5.5 Behavior Tree: Defend . 47
5.6 Behavior Tree: Multiple attacks . 48

6 Test 50
6.1 Test: Attack and Scout . 50
6.2 Test: All In . 51

iii

CONTENTS

6.3 Test: Harass Attack . 51
6.4 Test: Defend . 52
6.5 Test: Multiple Attack . 52

7 Improving Framework and Editor 54
7.1 Framework Improvements . 54
7.2 Editor Improvements . 55

8 Conclusion 57
8.1 Further Work . 58

A Classdiagram 59

B Execution Flow 60

Bibliography 61

iv CONTENTS

1Introduction

Video games offer a great platform for AI development. Depending on the genre of video game it may
vary which method to use when designing the AI.

Before going into details in a specific game and AI methods we will give an introduction to the video
game domain by describing and discussing the genres video games are generally categorized by. Then
we will narrow it down to a more specific branch in the strategy game genre and briefly introduce the
game chosen in this project.

1.1 Video Games

There exist a tremendous amount of video games. Each of these games can be put into one category or a
hybrid of multiple categories. The categories have different game aspects in focus, for instance adventure
games rely a lot on the story while action games rely more on fast paced action. In this section we will
present the most commonly known genres in video games and discuss their key features.

Action

Action games are typically characterized by being fast paced and require the player to have quick reflexes
and good accuracy to win the game. The action game category has several sub-categories such as beat-
em ups and shooters. Both sub-categories are action games but provide the player with very different
experiences.

In beat-em up’s the object is to fight your opponent(s), typically in an arena using melee weapons or
hand-to-hand combat. The first player that loses all his or her hit points loses the game. Amongst widely
known titles in this sub-genre are Tekken [17], Mortal Combat [15] and Dead or Alive [24].

Shooters are different in the sense that you take the role of a character that needs to eliminate a lot of
enemies while finding some path to a goal location or complete a mission. These games often offer a
huge arsenal of weapons ranging from melee weapons to ranged weapons like pistols, machine guns and
rocket launchers. The most popular ways of interacting with shooter games are by first or third person
gaming. In first-person shooters your view is defined by where the avatar is looking. In third-person
shooters your view is defined as a point somewhere behind the avatar effectively looking over his or her
shoulder.

Role-Playing

Role-playing games are often based on one or more avatars who through questing, combat, puzzle solv-
ing, monster slaying etc. can gain experience and increase in level. At each level the avatars can improve
their skills usually selected by the player. The primary source of entertainment for the player is seeing
and affecting the way the avatar(s) progress through the game as well as being immersed in the storyline.

1

1.1 Video Games

Many role-playing games incorporate some kind of adventure game aspects, which will be explained
below, and a story or primary mission for the player to complete in order to complete the game. Role-
playing games often implement some notion of good vs. bad for example in the form of karma. Karma
determines how non-playable characters (NPCs) in the game perceive the avatar(s). This forces the
player to give decisions additional consideration as every decision has an impact on the rest of the game.

Adventure

Adventure games primarily present the player with riddles and puzzles that the player has to solve in
order to progress in the game. There is always a main goal or storyline in the game that is reached
through successfully solving the riddles and puzzles.

An old but still popular example of adventure game, are the games of the Monkey Island series [11]. In
this series the player is presented with one major goal at the beginning of the game and then through
smaller chapters, sub goals are completed, in order to reach the final goal. A significant part of this spe-
cific series is the oddness of the riddles. The player will often be presented with very illogical problems
requiring illogical solutions.

Strategy

The strategy genre revolves around the player making strategic and tactical decisions in order to win a
game. The core of most strategy games is warfare and the strategic and tactical decisions revolve around
the player training the correct units to counter the opponent units while seizing control of the map.

Some strategy games revolve around a more global and realistic scenario. Here the player can be pre-
sented with both military, political, economic and research problems that need to be solved in order to
complete the goals of the game.

Simulation

The simulation genre is based on making a game as realistic as possible. Probably the commonly best
known type of simulation games are the flight simulators. These games are designed to teach the player
how to pilot a plane by having realistic cockpits and flight conditions, and letting the player take off,
maneuver and land the plane on the ground again.

Some simulation games revolve around making some business or company run and grow. This would
require the player to make decisions about expanding operations and making use of supply and demand
to increase revenue of the players company.

Summary

We have decided to focus on a game from the strategy genre. The primary reason for this is the obvious
application area for an AI. Strategy games rely on strategic and tactical decision which often require
some clever reasoning. We have also chosen the strategy genre because the remaining genres do not
offer the same possibilities in AI development as the strategy genre. For example in adventure games
there is no real need for an AI to act as the player as the game is most likely predetermined.

2 1. Introduction

1.2 Strategy games

1.2 Strategy games

For years, the genre of strategy video games has been popular among gamers all over the world. The
reason for this may very well be the fact that strategy games encourage the use of strategic and tactical
thinking. However there is a major difference between some games in the genre that has lead to the
definition of two subsets of strategy games, namely Real-Time Strategy (RTS) and Turn-Based Strategy
(TBS).

1.2.1 Turn-Based Strategy

The most defining characteristic in Turn-Based Strategy (TBS) games is the fact that each round each
player has one turn to perform his or her actions. Actions can consist of moving or attacking with
military units, selecting new research, setting up a building queue for a town etc. When all players have
finished their turn the round ends and a new round begins. As one would imagine TBS games can be
long running. The turn-based game play also has an impact on the creation of an artificial intelligence to
provide an entertaining challenge for a human player. This, due to the fact, that when the AI would get
its turn and that the length of the turn being, theoretically unlimited, the AI could perform more complex
calculations and use more complex models for the game to determine the course of action.

Many people know the series of TBS games, Civilization [14] created by Sid Meier. This series fea-
tures turn-based game play with a strong AI and a lot of features that need to be used strategically to
win the game. These features include diplomacy, keeping your civilization happy and researching new
technology etc.

1.2.2 Real-Time Strategy

Opposed to TBS games are Real-Time Strategy (RTS) games. These games are more action-oriented
and tactical and strategic decisions need to be made on the fly while the opponent(s) may be attacking
you. Most RTS games have relatively short game time compared to TBS games, but pride themselves on
being more realistic due to the fast paced action packed nature of the games. This real-time fast paced
game play puts an obvious limit on the AI that can be used in the game. The AI cannot be too complex
as the calculations and models need to be computationally light, or else the AI will not be able to make
decisions in due time as actions become obsolete if not executed when required. The challenge with RTS
AI is creating an intelligent solution that does provide an entertaining challenge to the human player and
uses relatively few resources.

1. Introduction 3

1.3 Video Game Environment for This Project

1.3 Video Game Environment for This Project

A classic in the RTS genre, and the focus of this project, is StarCraft: Brood war [2]. This game features
a fast paced action game of resource management and strategic decision making a long with tactical
management of military units.

Having been on the market over a decade, with a huge community sharing their thoughts and opinions
of the game with the Blizzard Entertainment development team, has resulted in a stream of updates and
patches to tailor the game to be very balanced. This means that out of the three playable races, there is
no one more powerful than the others.

StarCraft: Brood war is a complex game to play. It involves actions being performed at multiple scales
as players have to make economic, strategic and tactical decisions alongside reacting to the opponent.
All this is done on the fly due to the game being an RTS game.

With the game having fog of war and thus being partially observable, it often comes down to mind games.
This means that it is possible to keep your opponent in the dark while you execute some strategy and
surprise attack him, but if not done with care or not having eyes open on the opponent, he can surprise
you or spot your strategy and make it obsolete.

The Brood War Application Programming Interface (BWAPI) enables the development of custom AIs
for StarCraft: Brood war with relative ease. The BWAPI will be further explained in Section 2.5.

All this combined along with our own interest in the game makes StarCraft: Brood war the obvious
choice of game and a very interesting environment for developing an AI and studying it. We will go into
more details on StarCraft: Brood war in Chapter 2.

1.4 Project Purpose

The main goals of this project are as follows:

• Give an in depth description of StarCraft: Brood War to pinpoint the challenges in developing an
AI for the game and create a game scenario to be used for case studies.
• Discuss viable AI methods for creating RTS game AI and present a survey of applying the different

AI methods to StarCraft: Brood War. With the purpose of finding the pros and cons of the different
methods.
• Present possibilities for future work and improvements.

4 1. Introduction

2StarCraft: Brood War

StarCraft: Brood War is a real-time strategy game developed by Blizzard Entertainment. The game was
released in 1998 and later that year Blizzard Entertainment released StarCraft: Brood War, an expansion
to the game which brought several game play improvements including new units, maps, campaigns and
balancing changes. From this point forward will we refer to StarCraft: Brood War as StarCraft.

The Setting

StarCraft is set in a science fiction universe created by Blizzard Entertainment. The location is the distant
Koprulu Sector of the galaxy where three powerful races fight for supremacy and survival.

StarCraft offers three playable races. The Terran, human outlaws exiled from earth. Protoss, the proud
and highly intelligent race of their home planet Aiur. Finally the Zerg, monstrous creatures who seek
only to destroy.

Every unit in StarCraft is unique to its respective race. The technologically advanced Protoss are known
for their expensive but strong units. They rely on the quality of each unit over their numbers. The Zerg
on the other hand have inexpensive but rather weak units. Their power lie in their numbers. The Terran
units are more balanced regarding price and strength.

2.1 Game Aspects

The competencies for succeeding in the game are often categorized into macro management and micro
management. Macro management includes the big decisions, like which initial strategy to use, which
units to get, when to attack, moving armies across the map etc. Micro management is when individual
units are given specific orders. The major aspects of StarCraft will be described in the following sections.

Resource Management

Resources are needed in order to construct buildings, train units and research upgrades. In StarCraft there
are two kind of resources, minerals and vespene gas. Minerals can be mined right of the mineral patches
by workers but in order to get vespene gas a gas extractor has to be built on the vespene geysers which
workers then can extract gas from. Throughout the game players need to sustain a consistent income to
ensure unit training, research and base construction when needed. The workers gathering resources are
the lifeline of each players progress in the game. Therefore, it is critical to protect the resource line from
enemy attacks, as the loss of even a few workers will cripple the economy and result in a major set back
in training military units.

5

2.1 Game Aspects

Base Construction

Base construction includes which building to construct and where to place them. Which buildings chosen
affects which units are possible to train and the placement of building is also important as it is possible
to block some entry point to your base. The three races all have diverse and unique buildings and way of
construction.

The Zerg base appears as one living organism and the buildings are able to heal themselves slowly over
time. Some buildings spread a carpet of biomass called creep and most new buildings may only be built
on the creep. The Zerg workers sacrifice themselves in the process of building structures as they do not
construct the structures but rather evolve into buildings themselves.

Protoss buildings are not constructed but warped in from the Protoss home planet. The workers only
need to start the warp in and are then free to perform other commands. The majority of Protoss buildings
require psi power in order to be warped in. The building known as a pylon emits psi power around itself.
In this radius new buildings can be warped in and the finished buildings need the psi power to continue
operation.

Unlike the other two races, the Terran have no restriction to where they can place buildings. Some of
the Terran buildings can lift off and fly to a new location. When constructing a building one worker
attends the construction site until it is finished and is vulnerable to attacks. A weakness of the Terran
construction is when a building takes a certain amount of damage it will catch fire and if not repaired by
a worker it will eventually burn to the ground.

Scouting

The partial observability of the game makes scouting and map awareness an essential part of the game.
The players only see what their own units and buildings have vision of, so in order to see what the
opponent is planning they have to send some units to do reconnaissance. It is important to scout to see
what your opponent is doing so that you can take counter measures. For instance if your opponent is
training flying units or units capable of cloaking, you need some anti-air units or detector units. Scouting
is also the only source of information gain in the game. By scouting your opponent early in the game
you can expose his strategies and if he for example is doing a rush strategy, where he attacks very early,
appropriate countermeasures can be taken.

Combat

Combat in StarCraft includes several aspects. They range from selecting appropriate units to counter
your opponent’s units, timing of attacks and controlling individual units in combat. The controlling of
individual units is often referred to as micro management. One specific technique called dancing is when
the player orders a unit to attack, while the weapon is reloading the unit moves back to avoid damage
and then in again to shoot.

6 2. StarCraft: Brood War

2.2 Game Mechanics

2.2 Game Mechanics

All aspects of the game are cut in stone and there are close to no random factors. This means that the
outcome of a game depends solely on the players playing it and their skill. For instance the outcome of a
battle between two equal forces of military units depends only on how the players control their units and
not on any varying damage or probability factors. Other RTS games have chance elements like ranging
damage, critical hits (probability of increased damage), evasion and dodge (chance of avoiding attacks)
and also a unit armor decrease incoming damage by some percentage. None of these elements exist in
StarCraft. For example the marine in StarCraft has a starting damage of six. This can be upgraded three
times giving +one damage each time. Said unit will always deal this damage, no more no less. The
unit taking the damage may have some armor value. Say it has a armor value of two, then all incoming
damage will be decreased by two leaving a non-upgraded marine deal four damage each shot. There
is although one thing that has an effect on damage in StarCraft and this is the size of a unit. Units in
StarCraft are either small, medium or large. Building are considered large. The size of a unit is taken
into account when calculating the effects of different classes of damage. The damage classes and their
effectiveness in relation to the three unit sizes are as follows:

• Normal weapons are equally effective against all types of units.
• Concussion/Plasma weapons do 50% damage against Medium units and 25% against Large units.
• Explosive weapons do 50% damage against Small units and 75% against Medium units.

The Scenario used in this project will only include one type of unit, which is of small size, and hence
always does full damage. These damage calculations will therefore not be discussed further.

Although not existing as unit abilities, StarCraft has the terrain determined property of a unit being on
high ground. Units attacking enemy units who are on higher ground have a chance to miss on attack.
As our scenario will not allow units being on high ground this element is considered not relevant for the
time being.

This section is based on the information from the StarCraft Compendium [4].

2.3 Full Game Scenario

A full game scenario of StarCraft provides all players with a base and a few workers at the start of the
game. Players build and expand their base, train units and ultimately eliminate all opposing players. The
players keep in mind all the aforementioned elements as the game progresses. They plan their strategies
and switch to new strategies if they see the opponent do something unanticipated which affects the current
strategy.

Challenges

To summarize, the challenges in playing a game of StarCraft are many. First of all an initial strategy
must be chosen. This strategy will be executed until successfully defeating the opponent or be replaced
by a new strategy if your opponent’s strategy is resistant to your current strategy. Furthermore you have
to scout your opponent to see what he is doing and ideally keep some pressure on him by attacking his

2. StarCraft: Brood War 7

2.4 Scenario

resource gatherers. All this, alongside defending yourself from your opponent doing exactly the same to
you, poses several interesting challenges.

2.4 Scenario

The scenario that we will use as a test bed for our approach is a simplified subset of a full game of
StarCraft. The goal is to capture the important aspect of a full game and still keep it as simple as
possible.

HQ

EHQ

Mid

Top

Bottom

Figure 2.1: A map illustrating our scenario. There are three attack routes, some obstacles and two HQs.

Our scenario, which is depicted in Figure 2.1, consists of a small squared map with two players. Each
player will have a HQ in opposite corners of the map, that is at the bottom left and top right of the map.
Every ten seconds a marine will spawn close to the HQ. The map is designed in such a way that there are
three attack paths, top, mid and bottom. The goal of the players is to destroy their opponent’s HQ and by
doing this they win the game. The purpose of having units spawn at time intervals rather than having a
building training units at the cost of resources is for simplification of the scenario. By doing this we can
disregard the base building and resource management aspect of the game and focus solely strategic and
tactical decisions. The map design with only three paths also adds to the simplicity of the scenario.

The challenges to face in this scenario are the following:

• Should one launch an attack on one path with full force or split up the army and attacks several
fronts

8 2. StarCraft: Brood War

2.5 Brood War Application Programming Interface

• Scout the opponent for information and decide how many units to risk for this information
• Decide when to retreat in order to defend the HQ or just continue the an ongoing attack
• Predict what the opponent will do based on the gathered information
• Should one send some units to harass the enemy and ideally take out some units

2.5 Brood War Application Programming Interface

For the implementation we will be using Brood War Application Programming Interface (BWAPI) [6].
BWAPI is a free open source C++ framework for developing custom AIs for StarCraft: Brood War.
BWAPI uses DLL injection The required software for using the BWAPI is StarCraft Brood War 1.16.1,
an Integrated Development Environment (IDE) appropriate for the chosen programming language, Mi-
crosoft Windows and due to BWAPI using DLL injections a loader is needed to enable the BWAPI
injections to be loaded into the StarCraft process. Although BWAPI being an interface written in C++
there exist a wide range of wrappers and proxy bot implementation. With proxy bot the AI bot is running
in a remote process and communicates with the AI module on top of the BWAPI through sockets. Wrap-
pers and proxy bot allow the programmers to write AI behavior in different programming languages than
C++.

With BWAPI it is possible to query the game state for relevant information on every game frame. Meth-
ods for retrieving game information include methods being queried on individual units to get their type,
position, health status, upgrades, etc. and methods for querying players in the game for information like
amount of resources, get a list of all their units, supplies used, etc. Furthermore there are methods for
retrieving information on the specific map being played. For instance mineral fields, vespene geysers,
etc. Supplementing the built in terrain methods in the BWAPI there exists an add-on for BWAPI called
Brood War Terrain Analyzer (BWTA) which analyzes the map being played and returns all possible base
locations, choke points and regions.

In addition to methods for retrieving game information there are methods in the BWAPI for issuing
orders to specific units. These orders include move, attack, build and train commands as well as using
unit abilities etc. There are also methods for querying specific units for their current status for instance
one can check whether a unit is a worker with the isWorker method. Furthermore the methods isIdle,
isMoving, isGatheringMinerals, isCarryingMinerals, isAttacking, isBeingConstructed, which are self
explanatory, grant the programmer great control over the units and their status.

Every unit and entity in the game has a position on the map specified as an x and y coordinate. A map of
size 64x64 in StarCraft consists of 64 position tiles time 64 position tiles. Each position tile consists of
32x32 positions and these positions define the x and y coordinates of units. Tile positions and positions
are used depending on the orders to issue, for instance when constructing buildings tile positions are used
and positions can be used to move units. This fine resolution of the map gives a fine grained control of
units.

BWAPI works by triggering methods on certain events in the game. Also there is a method that is fired
on every frame of the game. Examples of game events are onStart, onEnd, onSendText, onUnitShow,
onUnitHide, onUnitCreate and onUnitDestroy. OnSendText can be used by the programmer to trigger
some AI behavior or set some game options, like game speed or cheat flags, while the game is running.
In BWAPI there are two cheat flags accessible, enable full map information and enable user input. These
are great for debugging purposes, but are of course not allowed in official games. If full map information

2. StarCraft: Brood War 9

2.5 Brood War Application Programming Interface

is enabled then all units on the map are fully accessible to the BWAPI meaning that all information on the
unit are accessible. With the flag disabled then units owned by the BWAPI player remain fully accessible,
but the enemy units fall in the categories normal, partial and no accessibility. Normal accessibility
is when a unit is detected and visible. The information available includes all of the attributes in full
accessibility except some specific attributes like what a building is producing, how much time left on the
production or the quantity of a units items etc. Partial accessibility is for cloaked units that are visible, but
not detected. The onUnitHide and onUnitShow events are triggered when units transition between partial
and no accessibility. Units hidden by the fog of war or dead units fall in the category no accessibility.

We will be using the bwapi-mono-bridge for implementing the AI [7]. It is a wrapper implementation
that exposes the BWAPI functionality to the .NET framework through Mono. This makes it possible to
do the implementation in a .NET language of our choice which is C#. Bwapi-mono-bridge implements
two solutions, one that embeds the AI bot in the same process as StarCraft and one that runs in a separate
process and communicates as client/server. We will be using the client/server solution in order separate
the AI and game execution. When run in the same process space they can interfere with one another for
instance if there is a computationally expensive task in the AI, it can slow down the game if run in same
process.

10 2. StarCraft: Brood War

3AI Methods

AI is quickly becoming a larger part of computer game development today. With graphics approaching
photorealism, the next big improvement is the AI experience. However, there are several issues one must
deal with when developing game AI. First off, games today are often very complex with respect to the
size of the game world and the realism demanded of NPCs. If one were to consider the entire state space
of a modern game, including the different actions and positions of the NPCs, it would be impossible to
apply any of the traditional academic AI methods.

To address this problem, developers will often have to simplify the state space of the game. However,
this often results in a simplified AI which could reduce the game experience, as players today demand
even more realistic behavior from the AI. The representation of the game must thus be simple enough
for the AI to process it in real-time, and still complex enough to produce a believable behavior.

Another problem one must address is the scope of game AI. When working with academic AI one will
often try to reach a level where the AI can be considered super-human. That is, it is superior to a human
with respect to the particular problem for which it was developed. In game AI we never want to reach
a super-human level of AI. An AI who can defeat the human player every time will drastically reduce
the game experience to the point where the player forfeits. As a game developer it is in ones interest to
create an AI which poses a certain challenge for the player, but is still capable of mistakes resulting in
defeat.

There are several different approaches to game AI capable of dealing with the above mentioned problems
to some extent. Two of these approaches are scripting and Finite State Machines(FSM). Each of these
approaches have their own pros and cons and depending on the game scenario it has been up to the
programmers and designers of the game AI to find a compromise.

In the next sections we will describe the general principles of these two approaches to game AI, namely
scripting and FSMs, and a third approach Behavior Trees(BT). The methods will be described, discussed
and evaluated in relation to the scenario proposed in Section 2.4. A discussion of different AI techniques
such as learning and planning will also be included, to make grounds for further improvements of the
methods evaluated.

11

3.1 Scripting

3.1 Scripting

When developing AI for computer games the speed of execution is of considerable importance. Depend-
ing on the type of game an AI should typically make decisions within a time window of a few game
frames. It is therefore of no use developing sophisticated and complex AIs if they are not capable of
executing in real-time. Another factor is the amount of work it takes for a development team to develop
an AI. Typically the AI is a very complicated part of the game and may take months of developing
time. Furthermore, due to the complexity of AIs, it often demands the attention of skilled programmers;
programmers who are already working on many other aspects of the game.

For this reason, it is in every game company’s interest to reduce this development time and ease the strain
on their programmers. The best way to achieve this would be to put some of the work on other parts of
the development team, mainly game designers. To do, this the process of developing AIs would have to
be simplified.

It is due to these demands that scripting has become the most popular method for developing computer
game AI. While being very efficient compared to advanced AI methods, it is also quite easy to learn.
Usually scripting is done in a scripting language, which is always very high level and thus accessible.
The high level constructs also reduces the time it takes to write scripts, as more instructions take up fewer
lines compared to lower level languages.

It has also become quite popular for game companies to develop their own scripting languages for their
games. By doing this they can ensure that it only contains the constructs and functions relevant for a
particular game. Often, such languages are accompanied by tools providing GUI-based editors for the
language. One such tool is Blizzard’s StarCraft 2 Editor [3], the world editor for StarCraft 2. This editor
implements Galaxy, a scripting language developed by Blizzard Entertainment, and makes scripting
easily accessible for everyone, even the end users.

Example

This section will give an example of scripting applied to a small part of our StarCraft scenario. Although
we could have used the editor of the original StarCraft game, we feel that this would result in an unfair
assessment of scripting, since that editor is more than a decade old. Instead, we will show how scripting
can done today, using the StarCraft 2 Editor to demonstrate the script of a similar scenario.

Figure 3.1 illustrates a harassing behavior of a single unit, created in the StarCraft 2 Editor’s trigger
editor, and show how scripting can be done without the need to manually write the code.

12 3. AI Methods

3.1 Scripting

Figure 3.1: The StarCraft 2 Editor’s trigger editor

A behavior similar to the one in Figure 3.1 is shown in Listing 3.1 just to illustrate how the code of a
written script could look like. Parts of the code have been omitted and replaced with comments to reduce
the number of lines of code.

1 def HarassEnemy ()
2
3 Un i t nea res tEnemy = ge tNeares tEnemy ()
4
5 whi le neares tEnemy . g e t D i s t a n c e () > 6 do
6 # move t o n e a r e s t enemy
7 end
8
9 i f neares tEnemy . g e t D i s t a n c e () <= 6 then

10 # a t t a c k enemy f o r one second
11 end
12
13 # move away from enemy
14 end

Listing 3.1: Guard behavior on unit sighted event.

Assume that both of these scripts are set to execute when the unit is created on the map. First it will

3. AI Methods 13

3.2 Finite State Machines

find the nearest enemy unit and, if outside its range, start moving towards it. At every given interval the
script will check whether the enemy unit is within range of its weapon. When this condition is satisfied
it will attack the enemy unit for one second and then start moving away from it. Both of these scripts do
roughly the same, but what is important to note, is that every variable, condition and action used in the
script in Figure 3.1, have been created just by clicking through the various options offered by the GUI.

With tools such as this, scripting has been simplified to the point where programmers need only to
create the tool. Afterwards the playable parts of the game can be created in the editor without help from
programmers. Furthermore, scripts such as these are interpreted by the game engine and do not need
to be compiled with the game. This allow for developers to change the scripts and view the changes
without re-compiling the entire game. It also allows end users to write their own scripts for the game
once released and create their own AI.

3.1.1 Summary

Scripts have been and still are the more popular approach to AI development, and with good reason.
Much effort is put into developing scripting languages and tools to assist developers and designers creat-
ing even more realistic AI in shorter time. Especially tools such as the StarCraft 2 Editor show just how
powerful and efficient scripting can be, and that the use of the method is far from declining. Other than
the ease of use, scripts are also an efficient methods when it comes to computation time compared to ad-
vanced AI techniques. However, scripting has a limited functionality, as the complexity of scripts quickly
increase with the complexity of the behavior. This can result in scripts becoming incomprehensible to
game designers who may not have the necessary programming experience.

3.2 Finite State Machines

FMSs are regarded as one of the simplest approaches to NPC behavior in games. FSMs have been
widely applied especially to first-person shooters [1], but also other game genres such as RPGs and RTS
games [16]. The reason for FSMs being so popular is their ease of use as humans find the concept of
’being in a state’ comprehensible. With FSMs game designers can design the behavior of NPCs with
close to no knowledge about programming.

In this section we will discuss the structure of FSMs and Hierarchical Finite State Machines (HFSMs).
We will then show an example of how HFSMs can be applied to a small part of the StarCraft scenario.
Concluding the section, the pros and cons of FSMs compared to other methods will be discussed.

14 3. AI Methods

3.2 Finite State Machines

3.2.1 Structure

The definition of an FSM can be seen in Definition 3.1.

Definition 3.1 – Finite State Machine
An FSM can be defined as a quintuple (Q,Σ,δ,q0,F) where

- Q is a finite, non-empty set of states
- Σ is a finite set of inputs
- δ : Q×Σ→ Q is the state-transition function
- q0 is an initial state s.t. q0 ∈ Q
- F ⊂ Q is the set of accept states

Visually the FSM can be represented as a directed graph with states and transitions, both illustrated in
Figure 3.2.

State State transition

#Event

Figure 3.2: Illustration of a state and a transition arc.

When applied to game AI each of the states represent some behavior or an action of an object. Σ will be
the set of events or conditions in the game which can trigger a transition from one state to another. An
example of this is given in Figure 3.3.

Enemy sighted

Aggressive

Guarding

(a)

EnemyInSight?

Attack

Guard

(b)

Figure 3.3: Two simple finite state machines based on either behaviors (a) or actions (b).

We observe two FSMs which both model a unit standing guard. The unit will stand guard as long as
it does not spot an enemy. Depending on how the unit is modeled the sighting of an enemy will either
trigger an event or change a condition according to Figure 3.3. With each iteration of a game, events will
be observed and conditions will be updated. Considering Figure 3.3a, if at some point the event Enemy
sighted is fired, it triggers the transition function δ(Guarding,Enemy sighted) = Aggressive. As a result
of this transition function the behavior of the unit will change to Aggressive. In a simple scenario such

3. AI Methods 15

3.2 Finite State Machines

as this, we can assume that Figure 3.3b would represent roughly the same behavior. When the condition
EnemyInSight? becomes true, the unit will execute the Attack action.

The difference between the two FSMs in figure 3.3 is that Figure 3.3a implements the attack action as
part of its aggressive behavior, whereas the FSM in Figure 3.3b executes the attack action as a direct
result of the condition. If states are used to represent behavior, the states implement all the actions
relevant to the behavior and are responsible for executing the entire behavior. When using FSMs to
design computer game AI, both approaches can be applied and both have their pros and cons. Using
behavior will often provide a better overview with fewer states and transitions, but requires more lines of
code in each state. On the other hand, if every state represents a single action, the number of states and
transitions can become quite numerous. It is to the programmers and designers to decide upon which
approach to use.

3.2.2 Hierarchical Finite State Machines

Even though FSMs are often adequate to describe the behavior of a game character the number of states
and transitions often present a problem. When the complexity of a game increases the number of states
and transitions between these will rapidly increase. It quickly becomes very difficult for the game de-
signers to keep track of the different states and their transitions. Thus working with regular FSMs in
larger games is tedious work to say the least.

An extension of FSMs, HFSMs [5], addresses some of these problems. This model introduces the con-
cept of modularity by allowing groups of states to share transitions. The purpose of this is to avoid
redundant transitions and get a better overview of the model. Using HFSMs it also becomes easier to
group action states to form behaviors. An example of this is illustrated in Figure 3.4.

Enemy sighted

Aggressive

Guarding

AnHourPassed?
Patrol

Stand
Guard

DonePatrolling?

Figure 3.4: Illustration of a HFSM modeling a guard unit.

This illustration is a modification of the FSMs from Figure 3.3. The Stand Guard and Patrol actions
have been grouped together to form the more general Guarding behavior super state. This grouping
should be understood s.t. whenever an enemy unit is sighted from any state in the Guarding super state,
it triggers the Enemy sighted event and changes behavior to Aggressive. In short, there is a transition
from both Stand Guard and Patrol to Aggressive.

We could have modeled the Aggressive behavior state in the same way, including the actions and tran-

16 3. AI Methods

3.2 Finite State Machines

sitions necessary to model an aggressive unit. By doing this, events that causes a unit to abandon the
aggressive behavior, will need only one transition from the Aggressive super state, instead of one from
each of the inner states.

3.2.3 Example

To show how HFSMs can be applied to our scenario in StarCraft, we have illustrated a small harass
behavior in Figure 3.5. The scenario assumes that we have a unit standing idle awaiting orders.

Move
Away

Idle

Attack

Get
Nearest
Group

noTarget? Move
In

Range

notInRange?

Target in range

1 second passed

Move To Nearest Enemy Group

Harass Attack

Figure 3.5: Illustration of a HFSM modeling a harass behavior in StarCraft.

If the unit does not have a target it will transition to the Move To Nearest Enemy Group super state.
In this state there are two actions Get Nearest Group and Move In Range. Both can transition to the
Attack state if the Target In Range event is triggered. The Attack state is contained in the more general
Harass Attack super state, which specifies that a harass attack behavior is characterized by attacking an
enemy unit for one second and then moving away from it. This very simple HFSM illustrates how unit
behavior in StarCraft can be expressed, and is only meant to give insight as how a potential behavior
could be modeled. It should be clear to the reader, that more complex behavior would result in a quite
big HFSM with many more states and transitions.

3.2.4 Summary

The HFSM model is a great improvement over the FSM model, as it greatly reduces the number of
transition arcs and allow for a better overview of the behavior. The comprehensibility of the method is
also of great help to the game designers, who might not have expert knowledge on programming. Still,
when dealing with complex AI, the number of states and transitions can become quite extensive, resulting
in an opaque model structure. This also poses a problem if parts of a behavior need to be changed, as it
can be difficult to see through the consequences it might have in other parts of the behavior.

Furthermore, to even consider HFSMs, the behavior must be easily decomposable in order to divide
it into different states. This can be rather difficult with more complex behavior. On the other hand,
behavior may also become too simple with the risk of states becoming visible to the player. This will
end up shattering the illusion of intelligence and may decrease the players game experience. All in all,
HFSMs provides a very intuitive framework for dealing with transitions between behaviors, but at the
cost of being less flexible.

3. AI Methods 17

3.3 Behavior Trees

3.3 Behavior Trees

The concept of a BTs is a relatively new approach to behavior design. BTs combine elements from both
scripting and HFSMs to provide a flexible framework, usable by both game designers and programmers,
with as little complexity as possible. The structure of BTs are also meant to provide a more scalable
approach than HFSMs, by reducing structural complexity.

BTs have already been used in some recent games, including Halo 2 [10], Halo 3 [8] and Spore [9]. This
indicates that the method is not only applicable in theory, but also in practice. Our investigation suggests
that the typical use for BTs in commercial games is mainly for modelling NPC behavior. So far, we have
not seen any examples of BTs in RTS games, which means that further investigation is needed to confirm
whether it is a viable solution.

In this section we will define the syntax and semantics of BTs. This will be followed by an example
based on a small part of the StarCraft scenario specified in Section 2.4. Concluding the section will be a
comparizon of the previously mentioned methods.

3.3.1 Syntax

The syntax, we have chosen for the BTs described in this project is based on [23] with some modifica-
tions. A BT is a tree structure with a single root node specifying the beginning of the tree. The root node
can only have one child, which can either be a non-leaf node or a leaf node. All other node constructs
can only have one parent.

SelectorSequence Parallel

Decorator Root

Figure 3.6: Illustration of non-leaf nodes in a BT.

The non-leaf nodes, which are illustrated in Figure 3.6, must each have any finite number of children,
with the exception of the root node and decorator node which must have exactly one child. These non-
leaf nodes can be viewed as tasks to be performed. Each task is defined by a subtree consisting of the
different elements that make up the task. There are two basic non-leaf nodes that act as complements of
each other. These are the selectors and sequences. Furthermore, there are decorators, which can be used
to provide more functionality to the BT and parallels which adds concurrency.

The leaf nodes, illustrated in Figure 3.7, in a BT specify an observation or interactions with the game
environment. These leaf nodes are called conditions, actions and links. Leaf nodes are often viewed as
elementary actions and should be as concise as possible.

18 3. AI Methods

3.3 Behavior Trees

L

Action Condition Link

Figure 3.7: Illustration of leaf nodes in a BT.

3.3.2 Semantics

The execution of a BT is done depth-first, starting with the root node. Usually, all non-leaf nodes will
execute their children from left to right, but there are exceptions. When a node has finished executing, it
returns a status which can either be success, failure or exception. The circumstances under which success
or failure is returned, depend on the node type. Exception is returned in the case that something went
wrong and the node was unable to produce either a success or failure.

Selector

The selector node will sequentially try to execute its child nodes from left to right until it receives a
successful response. When a successful response is received it responds to its parent with a success. If
a child node responds with a failure, the selector node executes the next child node in line. If all child
nodes respond with failure the selector node itself responds with a failure.

Probability Selector

A probability selector is a selector node with a probability distribution over its children. The probability
indicates how likely a child is to be chosen during execution. If the child node chosen responds with a
failure it will normalize the probability distribution over the remaining children and choose a new child
to be executed. It responds to its parent in the same way as a normal selector node.

Sequence

The sequence node will execute each of its child nodes in sequence from left to right until a failure is
received. If every child node responds with a success the sequence node itself will respond with a success
to its parent. If somewhere during the sequence of execution, a child node responds with a failure, the
sequence node will respond with a failure.

Decorator

The decorator node can be added to the BT to provide even more flexibility. A decorator is essentially
a construct that allows for additional behavior to be added without modifying existing code. Decorators
are most commonly used as filters with conditions such as, execute once, execute with some probability,
etc. Besides filtering, a decorator can be used for pretty much any behavior modification the developer
can think of. In contrast to selector nodes and sequence nodes, decorators only have one child node.

3. AI Methods 19

3.3 Behavior Trees

A decorator returns success if the specified conditions are met and its subtree has been executed suc-
cessfully, otherwise it returns with a failure. A decorator which produces a failure will not execute its
subtree.

Parallel node

A parallel node is a node, which concurrently executes all of its children. The circumstances under which
a parallel node should return success or failure is up to the programmer. It could be that the parallel node
is only successful if all its children are successful, like the sequence node, or it could behave like a
selector node, only waiting for one successful child.

Condition

Conditions are nodes that will observe the state of the game environment and respond with either a
success or a failure based on the observation. This could be a value comparison, a condition check, etc.

Action

Actions are nodes that are used to interact with the game environment. Through actions we can control
various aspects of a game character such as movement and interaction with objects. When actions are
performed successfully, the action node will respond with a success. If the character fails to perform the
action, the action node will respond with a failure.

An action should be as simple as possible and often represent single actions in the game world. Even
though an action could be programmed to represent an entire behavior itself, this would be bad practice
as it would neglect the entire use of the BT structure.

Link Node

A link node holds a link to the root of another BT. When a link node is executed it will execute the linked
BT and wait for a response. If the linked BT is successfully executed, it will respond with success,
otherwise it will respond with failure. This introduces modularity and reusability of behaviors.

3.3.3 Black Board

During the execution of a BT it is often necessary to store information obtained from action nodes or
condition nodes at run time. Such information could be coordinates, names, probabilities, etc. Storing
such information enables one to obtain data in some part of the tree and store that data for later use.

To store this information we introduce the black board. The black board is basically a construct that
stores whatever information is written on it. We allow for the black board to be public such that any node
inside or outside the tree can read to and write on it. The reason is, that we want a mechanism for sharing
data between BTs.

The black board is meant to provide more freedom to the designer, but at the same time it demands more
responsibility. The information stored on the black board must be meaningful both in regards to naming

20 3. AI Methods

3.3 Behavior Trees

and context in which it is meant to be used. If used the wrong way it will quickly become difficult to
maintain.

3.3.4 Example

We illustrate, in Figure 3.8, how a BT can be applied to a simple harass behavior of a unit in StarCraft.

Hit and run

Range Run for 1
sec.

In
range?

Move in range
to nearest

enemy group

Attack nearest
enemy

Move to
enemy HQ

Enemy
visible?

Repeat
until

success

Retreat

!Enemy
visible?Move to

HQ

Harass mid

Figure 3.8: An illustration of a simple harass behavior modeled as a BT.

When this BT is executed the root node will run its child, the Harass mid selector node. This will
execute the left-most side of the tree first, starting with the Hit and run sequence and then the Enemy
visible? condition. This condition will check whether an enemy is visible somewhere in their path. If
this is the case it will produce a success and the sequence will move on to the Range selector, which
checks whether the visible enemy is inside range of the unit’s weapons. If this is not the case, it will
execute the action node and move the units to the nearest enemy group. When inside range, a timer

3. AI Methods 21

3.4 Additional Methods

decorator will execute the Attack nearest enemy action for at most one second. At last the Repeat
until success decorator will execute the Retreat sequence, causing the units to move back as long as the
enemies are visible. In case the Hit and run sequence fails, the Harass mid selector will execute the
Move to enemy HQ action, sending the units towards the enemy’s head quarter.

This all illustrates how a BT can be used to create a harass behavior in a simple way. Provided with a
proper GUI, the creation and editing of this tree would be a very simple task.

3.3.5 Summary

BTs provide an intuitive and comprehensible framework that can easily be applied to a game scenario.
The structure and semantics of BTs make it easy to follow the flow of the behavior, which is useful for
both understanding, modifying and debugging of existing behavior. The basic constructs provided by the
framework makes adding or removing parts of a behavior a simple task, and the modularity it provides
scales well as the behaviors grow in size. Another great construct when dealing with the problems of
scalability and reusability is the link node. By dividing smaller behaviors into BTs of their own, one can
keep overview of a larger behavior by combining smaller sub-behaviors via link nodes.

As with HFSMs, one still has to maintain an overview of the structure and identify the individual parts
of the behavior to decompose it into the tree structure. For this reason BTs may exhibit some of the same
issues as HFSMs, where parts of the tree may become apparent to the player, thus shattering the illusion
of intelligence.

3.4 Additional Methods

The preceding discussion on AI methods applicable to StarCraft only cover methods able to exhibit be-
havior that is completely static. Static in the sense that everything the AI is able to do has to be predefined
and precoded. In order to give an evaluation on these methods and their limitations, the following covers
a brief introduction on planning and learning so that a comparison between these methods and the ones
already discussed is possible.

3.4.1 Planning

The notion of planning can be described as the following: Given an initial state and a goal state, we wish
to obtain or reach, construct a sequence of actions that enables us to reach the goal state. This simplified
notion of planning is what we also refer to as Classical Planning [21].

In classical planning the states are represented by atoms, or rather, conjunction of atoms. Atoms being
relations optionally followed by a set of parameters, where the atom is true if the relation holds between
the terms given as parameters. Actions are not directly represented as simple functions on the environ-
ment, but are instead described by action schemas. Action schemas define both actions and the effects
of these actions. That is, when selecting an action for a plan, we know the corresponding effect of that
action, where the effect is the resulting new state. A set of preconditions for the action is also included
in the action schema. The action can only be taken if these preconditions hold true.

The problem of actually planning a sequence of actions can be viewed as a search problem. Starting in

22 3. AI Methods

3.4 Additional Methods

the initial state we can simply search the state space by traversing available actions from state to state
until a goal state is reached. Because of the declarative representation of action schemas there are two
possible ways to do this; forward search from the initial state and backward search from the goal state.
During execution of the plan, re-planning can be utilized if unexpected states are reached as a result of
following the plan. This introduces some overhead, because a new plan has to be computed.

Depending on the planning problem at hand, the state space can become so large that simple search
becomes unfeasible. To overcome this problem a heuristic function is employed.

With the basics of planning described, two different extensions to classical planning will be discussed.

Hierarchical Task Networks

Like classical planning, Hierarchical Task Network (HTN) planning use the notion of conjunctive atoms
to represent states and action schemas to describe actions. However, compared to classical planning, we
do not plan to achieve a goal, but instead perform some set of tasks. A task is defined as one or more
composites of sequential ordered actions or tasks. Each task holds a prescription of the distinct sequences
it can be decomposed into.

HTN planning is the process of recursively decomposing these tasks until only a sequence of actions are
left [12]. Actions which can be performed by an agent following the plan.

HTN planners take great advantage of the available knowledge on how tasks may be decomposed. That
is, whenever we encounter a task for which a plan has already been constructed through decomposition,
we may reuse that plan instead of having to search for a plan. This can greatly reduce the computational
time spent searching for new plans. HTN planners are also able to expand existing knowledge with new
decompositions of tasks. This knowledge base is sometimes referred to as a plan library.

The strength of a plan library is also one of the reasons why HTN planning has been more widely used
for practical applications compared to other planning methods. Game AI developers are for instance able
to predefine decomposition of high level tasks so that the AI acts as expected when encountering certain
tasks. On the other hand the game AI is able to construct behavior on its own for loosely defined tasks.
HTN planning has among other games been used in the first-person shooter Killzone 2 [20].

Goal Oriented Action Planning

Goal Oriented Action Planning (GOAP) is an extension to STRIPS (acronym for STanford Research
Institute Problem Solver) which in terms is analogous to classical planning 1. The GOAP extension was
proposed by Jeff Orkin from the M.I.T. Media Lab with the motivation being to develop the A.I. for
Monolith Productions first-person shooter F.E.A.R. [18]. GOAP has since been used in other games and
game genres, e.g. the RTS game Empire Total War [19].

The notion of GOAP adds several extensions to STRIPS. The most important of these extensions are,
including costs to actions and adding procedural preconditions and effects to the action schemas.

The cost of actions can be used as a heuristic when searching the state space for plans.

1The Planning Domain Definition Language (PDDL) used to formulate the planning problems in classical planning is a
minor extension to the STRIPS planning language.

3. AI Methods 23

3.4 Additional Methods

STRIPS and classical planning is limited in the action precondition in the sense that states can only be
recognized by a conjunction of atoms. Adding procedural preconditions extends the formal view of the
world, and allows additional filtering on states.

The last extension covered here is adding procedural effects to action schemas. Recall that action
schemas also describe the effects of taking an action. The declarative nature of these effects imposes
instantaneous change to the state when taking an action. In real world scenarios actions are not neces-
sarily instantaneous and instead take some amount of time to execute. Remember from Section 3.2 that
FSM states are procedural compared to the declarative states of planning. In GOAP both these notions
of states are used.

The time element is implemented by connecting the planning system with FSMs. When taking an ac-
tion in GOAP the procedural effects set the FSM state until the action is completed and the world is
transitioned to a new declarative state.

3.4.2 Reinforcement Learning

Reinforcement learning can be described as learning which actions should be taken in an environment in
order to maximize or minimize some cumulative reinforcement or reward [13]. However, reinforcement
learning is not defined by a specific method to achieve this learning process. It is instead defined as
characterizing a set of problems which we refer to as reinforcement learning problems. Any method that
help solve this problem are referred to as a reinforcement learning method.

The reinforcement learning problem in general can be visualized by Figure 3.9. Here we have an agent
who interacts with an environment by some actions a. Each action leads to some change in the environ-
ment represented to the agent as states, s. The information about the environment represented in the states
is dependent on the observability of the environment to the agent. It is required that this environment is
at least partially observable to the agent.

Agent

Environment

reward r action a

state s

Figure 3.9: Interaction between agent and environment in reinforcement learning.

Changes in the environment may induce some reward r to the agent, both negative or positive. This
reward is given by the reinforcement function which maps pairs of states and action to rewards. The
learning part of the problem is deciding the state and action pairs that result in the maximum or minimum
cumulative reward until some terminal state is reached.

The reward of an agent’s actions may not be immediate, but instead depend on the reinforcement learning
scenario at hand. Also, the goal of whether to maximize or minimize the cumulative reward also depends
on the scenario. In the following we will however assume that the given scenario require us to maximize
the reward. Consider the game Backgammon, where the configuration of the playing board would be

24 3. AI Methods

3.5 Evaluation

represented as states, and the legal moves represented as available actions. Positive reward would be
given only in terminal states corresponding to a win, and negative reward in terminal states corresponding
to a loss. Any other states would give zero reward. This is referred to as pure delayed reward.

Given the reinforcement function for a reinforcement learning problem, how does the agent learn which
state and action pairs are optimal? In the following, a policy determines which action should be taken
in each state. To indicate how good a given state is, we will refer to it’s value as the cumulative reward
obtained when starting in that state and following a fixed policy to a terminal state. A value function
describes a mapping from states to such values. Finding the optimal value function is the key problem of
reinforcement learning, because with this, starting in any state we will know not only that state’s value
but also all reachable states’ values through the available actions. Simply taking actions that result in
states with maximum, equals having followed the optimal policy. In this way the cumulative reward or
reinforcement will be maximized, as was the goal of reinforcement learning.

Finding the optimal value function is difficult, and usually done through approximation by dynamic
programming.

3.5 Evaluation

In this chapter we have described and discussed several methods and techniques for AI design in a
computer game scenario. Two of these methods, scripting and HFSMs, are widely applied in the game
industry today. The last method, BTs, is a recently proposed method, which has been applied to a few
games in the last few years. It is also worth noting, that we have found no material on BTs being used in
RTS games. This suggest, that it has yet to be tested whether BTs are actually usable in this game genre.

Of the three methods we evaluated, scripting is the most commonly used for creating behavior in games.
Scripting provides a simple solution for creating AIs, given little experience with programming. In the
last couple of years there has been an increase in the number of tools, which allow for scripting via GUI-
based editors, thus making delegation of behavior design an easier job for non-seasoned programmers
and game designers.

FSMs have also been used for many years, mainly for NPC behavior, but have also been proven to work
well in RTS game scenarios. FSMs provide a comprehensible framework for designers, but is not very
flexible and does not allow for reusability of logic. This results in a design with an increasing number
of duplicate states making it unnecessarily complex. The issue of increased design complexity has been
addressed in HFSMs by introducing super states, but the method still suffers from lack of reusability and
duplicate states.

BTs have been introduced to make up for the lack of reusability in HFSMs, by letting each node encapsu-
late its own logic. By doing this, a node will contain some behavior based on itself and its children. This
behavior can be seen as independent from the rest of the context and can be reused where it is needed.
This particular feature makes BTs very scalable compared to HFSMs and creating complex behaviors
will be less tedious.

All of the three methods evaluated share some common flaws. Behavior created by scripting, HFSMs
or BTs will react according to a predefined behavior. None of the methods provide any technique for
learning by mistakes or planning ahead. As such the behavior will be somewhat static, as something
unpredicted can never occur. Though the player may come to think of the AI as being intelligent, it

3. AI Methods 25

3.5 Evaluation

is only an illusion of intelligence. If the player were to see through the model, he could easily take
countermeasures resulting in a sure victory.

To gain some ideas for improvement of these methods, we chose to look at some techniques from the
field of classic AI, namely planning and learning. Our intention was to identify the strengths of these
techniques and use these as inspiration for future work.

Planning is shown to be very relevant when considering human-like behavior in games. Human-like
behavior in general relies greatly on planning ahead, not only when playing games, but in everyday life.
For this reason planning fits nicely with the concept of strategic thinking required in RTS games. Where
we set up some goals and plan a way to reach them. In comparison, scripting, FSMs and BTs rely on
reactive planning. That is, they only plan the next action to be taken based on the current context of the
world. Planning has already been proven feasible in RTS games, as GOAP has been applied to Empire
Total War. As such, it could be interesting to see how planning would fare in a fast paced RTS game like
StarCraft.

Learning, as planning, is also essential when looking at the behavior of humans. When performing tasks
we obtain experience, either by success or failure, and that experience is recalled next time we have to
perform a similar task. We have discussed reinforcement learning as a technique, and described how it
can be applied to a simple game of backgammon. This approach however, will try to find the optimal
sequence of actions to reach a terminal state. To incorporate this in an RTS game, the reward received for
an action would have to be defined in a way s.t. the sequence of actions does not result in super-human
behavior. Instead the reward should be based on the gameplay experience, which is the variable we want
to maximize. This is perhaps the greatest challenge of inducing learning in a game such as StarCraft, as
gameplay experience is a difficult measurement to define.

In the end we have chosen to focus on BTs, as it is a fairly new method which, we believe, holds a lot
of potential. Also, the apparent lack of use of BTs in RTS games, provides us with further challenges,
as it could prove to be infeasible. If BTs prove to be applicable and efficient in an RTS game scenario,
the study of planning and learning may inspire further improvements of the method, hopefully pushing
towards more human-like behavior in StarCraft.

26 3. AI Methods

4Framework and Editor

To support the construction and use of BTs we need an editor to create the structure of the tree and a
framework that can be used to implement the structure and utilize the BWAPI.

Given that BTs have only recently been adopted by the game industry for AI design, the availability
of existing frameworks and editors for BT implementation is very limited. The open source C# project
TreeSharp only includes a subset of the node constructs that BTs offer, and only offers the framework,
not an editor. Another open source project, also developed in C#, called Brainiac Designer offers both
a framework and a designer to utilize the framework. As with TreeSharp, this solution only includes a
subset of the node constructs. GameBrains is a recently released BT middleware framework and editor,
and is written in C++. It is available as open source, but currently only as a beta test agreement.

Because of this, we have developed our own graphical editor and framework supporting all the node
constructs in BTs. In this way the framework and editor can be optimized for use with the BWAPI.
In this chapter we will describe the approach used to create these two tools by giving an overview of
the tools. We will explain the more complex parts of the tools in detail to give a better understanding.
The framework has been implemented in C# using .NET 3.5 and the editor has been implemented in
Windows Presentation Foundation (WPF).

4.1 Framework

In this section we describe the developed framework to use when implementing behaviors in games. As
described, the framework has been implemented in C# and .NET and as such it requires the intended
game to expose an API that can be used in C# and .NET. The BWAPI is, as described in Section 2.5,
implemented in C++, which does not directly expose the API to C# and .NET. However, as we also de-
scribed in Section 2.5 the bwapi-mono-bridge framework exposes the C++ API to the Mono framework.
As the Mono framework is interoperable with .NET, the C++ API is available in C# through Mono.

We will provide an overview of all classes in the framework and show specific complexities in more
detail where we deem it necessary. The full class diagram can be seen in Appendix A.

+BehaviorTree(ind name : string, ind root : Node)
+SeparateThread(ind bar : BTBarrier) : void
+CloseBehaviorTree() : void
+Execute() : bool
+Name() : string
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+Result() : bool

-root : Node
-sync : BTBarrier
-result : bool
-separateThread : bool
-name : string

BehaviourTree

+Execute() : bool
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+GetParentTree() : BehaviourTree
+SetParentTree(ind tree : BehaviourTree) : void

-sync : BTBarrier
-parentTree : BehaviourTree

Node

LeafNode

NonLeafNode

Action Condition

+Link(ind subTree : BehaviourTree)

-subTree : BehaviourTree

Link -children : Node

Selector

+Sequence(ind nodes : Node)
-HasMoreNodes(ind index : int) : bool

-children : Node

Sequence

-Children : Node
-Results : bool
-Threads : Thread

Parallel

-child : Node

Decorator

+SequentialSelector(ind nodes : Node)

SequentialSelector

+ProbabilitySelector(ind nodes)
-SelectNode() : Node

-probabilities : double
-attempted : Node

ProbabilitySelector
+AParallel(ind nodes : Node)
-Run(ind id : object) : void

AParallel

+SParallel(ind nodes)
-Run(ind id : object) : void

-mustSucceed : Node

SParallel

+MParallel(ind nodes : Node, ind minSucces : int)
-Run(ind id : object) : void

-minSucces : int

MParallel

-Run() : void
+Start() : void
+Continue() : void
+Restart() : void
+End() : void
-IsWaiting() : bool
+Tree() : BehaviourTree
+BehaviorTreeThreadWrapper(ind tree : BehaviourTree)

-sync : BTBarrier
-tree : BehaviourTree
-t : Thread

BehaviorTreeThreadWrapper

+BTBarrier(ind count : uint)
+AddParticipant() : void
+AddParticipants(ind i : uint) : void
+RemoveParticipant() : void
+RemoveParticipants(ind i : uint) : void
+ParticipantCount() : uint
+ParticipantsRemaining() : uint
+SignalAndWait() : void

-ParticipantCount : uint
-ParticipantsRemaining : uint

BTBarrier

+NewBehaviorTreeBlackBoard(ind name : string) : string
+GetBlackBoardKeys(ind blackBoardName : string) : <uspecificeret>
+GetBlackBoards() : <uspecificeret>
+WriteValueOnBlackBoard(ind blackboardname : string, ind valueName : string, ind value : object) : void
+GetValueFromBlackBoard(ind blackBoardName : string, ind valueName : string) : object
+EraseValueFromBlackboard(ind blackBoardName : string, ind valueName : string) : void
+EraseBlackBoard(ind blackBoardName : string) : void

-blackBoard : Dictionary<string, Dictionary<string, object>>

BlackBoard

Figure 4.1: BlackBoard class

27

4.1 Framework

4.1.1 Auxilliary Classes

BlackBoard

The BlackBoard class shown Figure 4.1 provides a common place for all BTs to communicate. Each
BT will on creation get a spot on the blackboard. All BTs can read from and write to all other BT’s
blackboards thus creating the ability to communicate information between trees.

The blackboard is implemented as a dictionary of dictionaries. Each BT gets a dictionary in the outer
dictionary with its name as the key and the inner dictionary as the value. The inner dictionary consists of
string keys and object values. This allows the designer to store all kinds of information on the blackboard
under a given string name. This of course demands some responsibility from the designer as he or she
will need to keep track of what is written where on the blackboard.

+BehaviorTree(ind name : string, ind root : Node)
+SeparateThread(ind bar : BTBarrier) : void
+CloseBehaviorTree() : void
+Execute() : bool
+Name() : string
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+Result() : bool

-root : Node
-sync : BTBarrier
-result : bool
-separateThread : bool
-name : string

BehaviourTree

+Execute() : bool
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+GetParentTree() : BehaviourTree
+SetParentTree(ind tree : BehaviourTree) : void

-sync : BTBarrier
-parentTree : BehaviourTree

Node

LeafNode

NonLeafNode

Action Condition

+Link(ind subTree : BehaviourTree)

-subTree : BehaviourTree

Link -children : Node

Selector

+Sequence(ind nodes : Node)
-HasMoreNodes(ind index : int) : bool

-children : Node

Sequence

-Children : Node
-Results : bool
-Threads : Thread

Parallel

-child : Node

Decorator

+SequentialSelector(ind nodes : Node)

SequentialSelector

+ProbabilitySelector(ind nodes)
-SelectNode() : Node

-probabilities : double
-attempted : Node

ProbabilitySelector
+AParallel(ind nodes : Node)
-Run(ind id : object) : void

AParallel

+SParallel(ind nodes)
-Run(ind id : object) : void

-mustSucceed : Node

SParallel

+MParallel(ind nodes : Node, ind minSucces : int)
-Run(ind id : object) : void

-minSucces : int

MParallel

-Run() : void
+Start() : void
+Continue() : void
+Restart() : void
+End() : void
-IsWaiting() : bool
+Tree() : BehaviourTree
+BehaviorTreeThreadWrapper(ind tree : BehaviourTree)

-sync : BTBarrier
-tree : BehaviourTree
-t : Thread

BehaviorTreeThreadWrapper

+BTBarrier(ind count : uint)
+AddParticipant() : void
+AddParticipants(ind i : uint) : void
+RemoveParticipant() : void
+RemoveParticipants(ind i : uint) : void
+ParticipantCount() : uint
+ParticipantsRemaining() : uint
+SignalAndWait() : void

-ParticipantCount : uint
-ParticipantsRemaining : uint

BTBarrier

+NewBehaviorTreeBlackBoard(ind name : string) : string
+GetBlackBoardKeys(ind blackBoardName : string) : <uspecificeret>
+GetBlackBoards() : <uspecificeret>
+WriteValueOnBlackBoard(ind blackboardname : string, ind valueName : string, ind value : object) : void
+GetValueFromBlackBoard(ind blackBoardName : string, ind valueName : string) : object
+EraseValueFromBlackboard(ind blackBoardName : string, ind valueName : string) : void
+EraseBlackBoard(ind blackBoardName : string) : void

-blackBoard : Dictionary<string, Dictionary<string, object>>

BlackBoard

Figure 4.2: BehaviorTree class

BehaviorTreeThreadWrapper

The BehaviorTreeThreadWrapper class seen in Figure 4.4 encapsulates the threaded execution of a BT
in an easy to use class. The wrapper is instantiated with a tree and it creates a new barrier and a new
thread for use in the execution. This barrier is then set in the tree and all of its nodes. The new thread is
given the private Run method which calls the execute method on the tree.

The wrapper exposes three methods for execution; Start, Continue and End. The Start method starts the
execution thread and waits for it to reach the first node that requires it to wait at the barrier. Once the
barrier is reached the Start method returns. It is now up to the designer to repeatedly call the Continue
method for as long as necessary.

The Continue will signal the barrier and allow the BT to continue execution. If the tree has not yet
completed its execution, the Continue method will wait for it to complete or reach the barrier again.

If the BT has completed execution and the Continue method is called nothing will happen. If the tree
needs to be re-executed, the Restart can be called which resets the tree and restarts the thread.

The End method attempts to join the execution thread so that the execution can be completed.

28 4. Framework and Editor

4.1 Framework

+BehaviorTree(ind name : string, ind root : Node)
+SeparateThread(ind bar : BTBarrier) : void
+CloseBehaviorTree() : void
+Execute() : bool
+Name() : string
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+Result() : bool

-root : Node
-sync : BTBarrier
-result : bool
-separateThread : bool
-name : string

BehaviourTree

+Execute() : bool
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+GetParentTree() : BehaviourTree
+SetParentTree(ind tree : BehaviourTree) : void

-sync : BTBarrier
-parentTree : BehaviourTree

Node

LeafNode

NonLeafNode

Action Condition

+Link(ind subTree : BehaviourTree)

-subTree : BehaviourTree

Link -children : Node

Selector

+Sequence(ind nodes : Node)
-HasMoreNodes(ind index : int) : bool

-children : Node

Sequence

-Children : Node
-Results : bool
-Threads : Thread

Parallel

-child : Node

Decorator

+SequentialSelector(ind nodes : Node)

SequentialSelector

+ProbabilitySelector(ind nodes)
-SelectNode() : Node

-probabilities : double
-attempted : Node

ProbabilitySelector
+AParallel(ind nodes : Node)
-Run(ind id : object) : void

AParallel

+SParallel(ind nodes)
-Run(ind id : object) : void

-mustSucceed : Node

SParallel

+MParallel(ind nodes : Node, ind minSucces : int)
-Run(ind id : object) : void

-minSucces : int

MParallel

-Run() : void
+Start() : void
+Continue() : void
+Restart() : void
+End() : void
-IsWaiting() : bool
+Tree() : BehaviourTree
+BehaviorTreeThreadWrapper(ind tree : BehaviourTree)

-sync : BTBarrier
-tree : BehaviourTree
-t : Thread

BehaviorTreeThreadWrapper

+BTBarrier(ind count : uint)
+AddParticipant() : void
+AddParticipants(ind i : uint) : void
+RemoveParticipant() : void
+RemoveParticipants(ind i : uint) : void
+ParticipantCount() : uint
+ParticipantsRemaining() : uint
+SignalAndWait() : void

-ParticipantCount : uint
-ParticipantsRemaining : uint

BTBarrier

+NewBehaviorTreeBlackBoard(ind name : string) : string
+GetBlackBoardKeys(ind blackBoardName : string) : <uspecificeret>
+GetBlackBoards() : <uspecificeret>
+WriteValueOnBlackBoard(ind blackboardname : string, ind valueName : string, ind value : object) : void
+GetValueFromBlackBoard(ind blackBoardName : string, ind valueName : string) : object
+EraseValueFromBlackboard(ind blackBoardName : string, ind valueName : string) : void
+EraseBlackBoard(ind blackBoardName : string) : void

-blackBoard : Dictionary<string, Dictionary<string, object>>

BlackBoard

Figure 4.3: BTBarrier class

BTBarrier

Due to the fact that the Mono does not implement .NET 4.0 completely it was necessary to implement a
simple version of the Barrier class (Figure 4.3) from .NET 4.0. This is done by using two counters, one
for counting the total number of participants and one for counting the number of participants not yet at
the barrier. Once a thread reaches the barrier it signals the barrier and waits. The wait is done using the
Monitor object from System.Threading in .NET. If the number of remaining participants is greater than
0 the thread waits and if there are no remaining participants all threads are pulsed and resume execution.

4.1.2 Behavior Tree-Specific Classes

BehaviorTree

The BT class depicted in Figure 4.2 is in itself quite simple. It contains a Node object as its root node
and a name of the BT to allow for retrieval of the correct spot on the blackboard. The BT also contains a
reference to the active barrier in the tree execution. This barrier will be explained later. When the barrier
is set, in a BehaviorTree object, the method pushes the same barrier onto the root node which in turn will
apply it to any children it may have.

The Behavior Tree class also contains a method to allow execution in a thread separate from the cre-
ating and executing thread. With this in hand the calling thread can continue execution while the tree
runs its actions. The execution of the tree in a separate thread is made easier when using the Behav-
iorTreeThreadWrapper class described above.

+BehaviorTree(ind name : string, ind root : Node)
+SeparateThread(ind bar : BTBarrier) : void
+CloseBehaviorTree() : void
+Execute() : bool
+Name() : string
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+Result() : bool

-root : Node
-sync : BTBarrier
-result : bool
-separateThread : bool
-name : string

BehaviourTree

+Execute() : bool
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+GetParentTree() : BehaviourTree
+SetParentTree(ind tree : BehaviourTree) : void

-sync : BTBarrier
-parentTree : BehaviourTree

Node

LeafNode

NonLeafNode

Action Condition

+Link(ind subTree : BehaviourTree)

-subTree : BehaviourTree

Link -children : Node

Selector

+Sequence(ind nodes : Node)
-HasMoreNodes(ind index : int) : bool

-children : Node

Sequence

-Children : Node
-Results : bool
-Threads : Thread

Parallel

-child : Node

Decorator

+SequentialSelector(ind nodes : Node)

SequentialSelector

+ProbabilitySelector(ind nodes)
-SelectNode() : Node

-probabilities : double
-attempted : Node

ProbabilitySelector
+AParallel(ind nodes : Node)
-Run(ind id : object) : void

AParallel

+SParallel(ind nodes)
-Run(ind id : object) : void

-mustSucceed : Node

SParallel

+MParallel(ind nodes : Node, ind minSucces : int)
-Run(ind id : object) : void

-minSucces : int

MParallel

-Run() : void
+Start() : void
+Continue() : void
+Restart() : void
+End() : void
-IsWaiting() : bool
+Tree() : BehaviourTree
+BehaviorTreeThreadWrapper(ind tree : BehaviourTree)

-sync : BTBarrier
-tree : BehaviourTree
-t : Thread

BehaviorTreeThreadWrapper

+BTBarrier(ind count : uint)
+AddParticipant() : void
+AddParticipants(ind i : uint) : void
+RemoveParticipant() : void
+RemoveParticipants(ind i : uint) : void
+ParticipantCount() : uint
+ParticipantsRemaining() : uint
+SignalAndWait() : void

-ParticipantCount : uint
-ParticipantsRemaining : uint

BTBarrier

+NewBehaviorTreeBlackBoard(ind name : string) : string
+GetBlackBoardKeys(ind blackBoardName : string) : <uspecificeret>
+GetBlackBoards() : <uspecificeret>
+WriteValueOnBlackBoard(ind blackboardname : string, ind valueName : string, ind value : object) : void
+GetValueFromBlackBoard(ind blackBoardName : string, ind valueName : string) : object
+EraseValueFromBlackboard(ind blackBoardName : string, ind valueName : string) : void
+EraseBlackBoard(ind blackBoardName : string) : void

-blackBoard : Dictionary<string, Dictionary<string, object>>

BlackBoard

Figure 4.4: BehaviorTreeThreadWrapper class

4. Framework and Editor 29

4.1 Framework

Nodes

As described in the previous chapters BTs have several different types of nodes and they all have a
specific semantic regarding their execution. Below is a description of each of the nodes available in our
framework.

+BehaviorTree(ind name : string, ind root : Node)
+SeparateThread(ind bar : BTBarrier) : void
+CloseBehaviorTree() : void
+Execute() : bool
+Name() : string
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+Result() : bool

-root : Node
-sync : BTBarrier
-result : bool
-separateThread : bool
-name : string

BehaviourTree

+Execute() : bool
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+GetParentTree() : BehaviourTree
+SetParentTree(ind tree : BehaviourTree) : void

-sync : BTBarrier
-parentTree : BehaviourTree

Node

LeafNode

NonLeafNode

Action Condition

+Link(ind subTree : BehaviourTree)

-subTree : BehaviourTree

Link -children : Node

Selector

+Sequence(ind nodes : Node)
-HasMoreNodes(ind index : int) : bool

-children : Node

Sequence

-Children : Node
-Results : bool
-Threads : Thread

Parallel

-child : Node

Decorator

+SequentialSelector(ind nodes : Node)

SequentialSelector

+ProbabilitySelector(ind nodes)
-SelectNode() : Node

-probabilities : double
-attempted : Node

ProbabilitySelector
+AParallel(ind nodes : Node)
-Run(ind id : object) : void

AParallel

+SParallel(ind nodes)
-Run(ind id : object) : void

-mustSucceed : Node

SParallel

+MParallel(ind nodes : Node, ind minSucces : int)
-Run(ind id : object) : void

-minSucces : int

MParallel

-Run() : void
+Start() : void
+Continue() : void
+Restart() : void
+End() : void
-IsWaiting() : bool
+Tree() : BehaviourTree
+BehaviorTreeThreadWrapper(ind tree : BehaviourTree)

-sync : BTBarrier
-tree : BehaviourTree
-t : Thread

BehaviorTreeThreadWrapper

+BTBarrier(ind count : uint)
+AddParticipant() : void
+AddParticipants(ind i : uint) : void
+RemoveParticipant() : void
+RemoveParticipants(ind i : uint) : void
+ParticipantCount() : uint
+ParticipantsRemaining() : uint
+SignalAndWait() : void

-ParticipantCount : uint
-ParticipantsRemaining : uint

BTBarrier

+NewBehaviorTreeBlackBoard(ind name : string) : string
+GetBlackBoardKeys(ind blackBoardName : string) : <uspecificeret>
+GetBlackBoards() : <uspecificeret>
+WriteValueOnBlackBoard(ind blackboardname : string, ind valueName : string, ind value : object) : void
+GetValueFromBlackBoard(ind blackBoardName : string, ind valueName : string) : object
+EraseValueFromBlackboard(ind blackBoardName : string, ind valueName : string) : void
+EraseBlackBoard(ind blackBoardName : string) : void

-blackBoard : Dictionary<string, Dictionary<string, object>>

BlackBoard

Figure 4.5: Node class

Node

Node is the main class given in Figure 4.5. All types of nodes are descendants from this class. The
class is abstract and as such each descendant must implement all abstract methods defined in this class.
The class also specifies methods for how to propagate the barrier object and the parent BT object to its
children if there are any. The Node class specifies that each descendant must implement the Execute
method which is used to execute the BT.

+BehaviorTree(ind name : string, ind root : Node)
+SeparateThread(ind bar : BTBarrier) : void
+CloseBehaviorTree() : void
+Execute() : bool
+Name() : string
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+Result() : bool

-root : Node
-sync : BTBarrier
-result : bool
-separateThread : bool
-name : string

BehaviourTree

+Execute() : bool
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+GetParentTree() : BehaviourTree
+SetParentTree(ind tree : BehaviourTree) : void

-sync : BTBarrier
-parentTree : BehaviourTree

Node

LeafNode

NonLeafNode

Action Condition

+Link(ind subTree : BehaviourTree)

-subTree : BehaviourTree

Link -children : Node

Selector

+Sequence(ind nodes : Node)
-HasMoreNodes(ind index : int) : bool

-children : Node

Sequence

-Children : Node
-Results : bool
-Threads : Thread

Parallel

-child : Node

Decorator

+SequentialSelector(ind nodes : Node)

SequentialSelector

+ProbabilitySelector(ind nodes)
-SelectNode() : Node

-probabilities : double
-attempted : Node

ProbabilitySelector
+AParallel(ind nodes : Node)
-Run(ind id : object) : void

AParallel

+SParallel(ind nodes)
-Run(ind id : object) : void

-mustSucceed : Node

SParallel

+MParallel(ind nodes : Node, ind minSucces : int)
-Run(ind id : object) : void

-minSucces : int

MParallel

-Run() : void
+Start() : void
+Continue() : void
+Restart() : void
+End() : void
-IsWaiting() : bool
+Tree() : BehaviourTree
+BehaviorTreeThreadWrapper(ind tree : BehaviourTree)

-sync : BTBarrier
-tree : BehaviourTree
-t : Thread

BehaviorTreeThreadWrapper

+BTBarrier(ind count : uint)
+AddParticipant() : void
+AddParticipants(ind i : uint) : void
+RemoveParticipant() : void
+RemoveParticipants(ind i : uint) : void
+ParticipantCount() : uint
+ParticipantsRemaining() : uint
+SignalAndWait() : void

-ParticipantCount : uint
-ParticipantsRemaining : uint

BTBarrier

+NewBehaviorTreeBlackBoard(ind name : string) : string
+GetBlackBoardKeys(ind blackBoardName : string) : <uspecificeret>
+GetBlackBoards() : <uspecificeret>
+WriteValueOnBlackBoard(ind blackboardname : string, ind valueName : string, ind value : object) : void
+GetValueFromBlackBoard(ind blackBoardName : string, ind valueName : string) : object
+EraseValueFromBlackboard(ind blackBoardName : string, ind valueName : string) : void
+EraseBlackBoard(ind blackBoardName : string) : void

-blackBoard : Dictionary<string, Dictionary<string, object>>

BlackBoard

Figure 4.6: LeafNode classes

LeafNode

We have split nodes into two groups. The first group is LeafNode depicted in Figure 4.6. This class
is abstract and serves as a way of splitting nodes that can have children from those that cannot. All
descendants of LeafNode must not have children.

Action

The Action class is the class representing the action node in a BT. This class is abstract as the action nodes
require details about the available actions in the game API. As such, programmers and game designers
must create new descendants of Action that implement specific actions in the game environment.

30 4. Framework and Editor

4.1 Framework

Condition

As with action nodes condition nodes are also not possible to define before the game API is known. For
this reason the Condition class is abstract. Again it is necessary for the programmers and game designers
to implement conditions that use information from the game environment to determine if the result is
true or false.

Link

The link node of a BT is implemented in the Link class. A link node contains a link to another BT that
must be executed in the link node. The result of the link node is based on the result of the tree it calls.
When the Execute method is called on a Link object the Execute method of the tree it references is called
and the execution of that tree is started.

+BehaviorTree(ind name : string, ind root : Node)
+SeparateThread(ind bar : BTBarrier) : void
+CloseBehaviorTree() : void
+Execute() : bool
+Name() : string
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+Result() : bool

-root : Node
-sync : BTBarrier
-result : bool
-separateThread : bool
-name : string

BehaviourTree

+Execute() : bool
+GetSync() : BTBarrier
+SetSync(ind bar : BTBarrier) : void
+GetParentTree() : BehaviourTree
+SetParentTree(ind tree : BehaviourTree) : void

-sync : BTBarrier
-parentTree : BehaviourTree

Node

LeafNode

NonLeafNode

Action Condition Link -children : Node

Selector

+Sequence(ind nodes : Node)
-HasMoreNodes(ind index : int) : bool

-children : Node

Sequence

-Children : Node
-Results : bool
-Threads : Thread

Parallel

-child : Node

Decorator

+SequentialSelector(ind nodes : Node)

SequentialSelector

+ProbabilitySelector(ind nodes)
-SelectNode() : Node

-probabilities : double
-attempted : Node

ProbabilitySelector
+AParallel(ind nodes : Node)
-Run(ind id : object) : void

AParallel

+SParallel(ind nodes)
-Run(ind id : object) : void

-mustSucceed : Node

SParallel

+MParallel(ind nodes : Node, ind minSucces : int)
-Run(ind id : object) : void

-minSucces : int

MParallel

-Run() : void
+Start() : void
+Continue() : void
+Restart() : void
+End() : void
-IsWaiting() : bool
+Tree() : BehaviourTree
+BehaviorTreeThreadWrapper(ind tree : BehaviourTree)

-sync : BTBarrier
-tree : BehaviourTree
-t : Thread

BehaviorTreeThreadWrapper

+BTBarrier(ind count : uint)
+AddParticipant() : void
+AddParticipants(ind i : uint) : void
+RemoveParticipant() : void
+RemoveParticipants(ind i : uint) : void
+ParticipantCount() : uint
+ParticipantsRemaining() : uint
+SignalAndWait() : void

-ParticipantCount : uint
-ParticipantsRemaining : uint

BTBarrier

+NewBehaviorTreeBlackBoard(ind name : string) : string
+GetBlackBoardKeys(ind blackBoardName : string) : <uspecificeret>
+GetBlackBoards() : <uspecificeret>
+WriteValueOnBlackBoard(ind blackboardname : string, ind valueName : string, ind value : object) : void
+GetValueFromBlackBoard(ind blackBoardName : string, ind valueName : string) : object
+EraseValueFromBlackboard(ind blackBoardName : string, ind valueName : string) : void
+EraseBlackBoard(ind blackBoardName : string) : void

-blackBoard : Dictionary<string, Dictionary<string, object>>

BlackBoard

Figure 4.7: NonLeafNode classes

NonLeafNode

The other group of nodes in our framework are the non-leaf nodes illustrated in Figure 4.7. These are
represented with the class NonLeafNode. Descendants from this class are allowed to have children.

Decorator

The decorator node is, as described previously, a node that can add functionality, not available through
the other nodes, to the tree. We cannot define a generic way for a decorator to be implemented as this both
depends on the game API and on the feature that it implements. The class is abstract and the programmer
and game designer must define how their decorators work and implement it accordingly. It is required
that decorators must be non-leaf nodes and as such are required to have one child.

4. Framework and Editor 31

4.1 Framework

Sequence

A sequence node is implemented in a generic way through the Sequence class. This class executes all of
its children one after another until either one of the children fails or all children have succeeded. This
implements the exact semantic of the node as previously defined.

Parallel

The parallel nodes are used for executing several branches of a BT simultaneously. As the success or
failure of a parallel node is hard to define we have chosen to implement three different types of parallel
nodes, each with their own demands for successful termination.

AParallel

The AParallel class implements a version of the parallel node where the requirement for successful
termination of the node is given by the successful termination of all parallel branches. This means that
all branches must succeed for the AParallel to succeed.

MParallel

The MParallel class relies on a certain number of branches to succeed in order for the node to succeed.
When instantiating the node a minimum number of successful branches is given along with all of the
branches. When all branches are done executing the node checks how many were successful and if the
number of successful branches is greater than or equal to the minimum number of required successful
branches the MParallel is deemed successful.

SParallel

The last implementation of the parallel node is the SParallel class. This class implements a version of
the parallel, where several branches are given along with a list of which branches must succeed, in order
for the SParallel to succeed. There may be branches that are not necessary for the successful run of the
parallel and these may fail or succeed but have no influence on the result of the parallel node. Only the
branches defined in the list of branches that must succeed have an influence on the result of the SParallel

Selector

Selector nodes are used for selecting a branch of a BT based on some defined way of selecting. In our
framework we implement two types of selector nodes and these are described below.

SequentialSelector

The SequentialSelector class is the simplest of the selector nodes. It simply tries executing its children
one by one until one of them succeeds. If no children succeed the selector fails.

32 4. Framework and Editor

4.1 Framework

ProbabilitySelector

The ProbabilitySelector class implements a selector that selects amongst its children based on a proba-
bility for each child. As it is given by the definition of a selector node the ProbabilitySelector node must
select a child based on the probability for each of the children until one of them succeeds.

4.1.3 Execution of a Behavior Tree

The nodes and features of the BT framework have been described but the structure of the framework is
not enough to successfully construct a BT. It is also required that the programmer and game designer
know how a BT is executed. In this section we will describe how the execution of a BT is done. We will
use the BTs shown in Figure 4.8 as an example for the description.

PS1

MP1

Seq1 SS1

D1L
C1

A1

ST1

A4 A5

T1

0.9 0.1

(a) BT T 1

AP1

A2 A3

ST1

(b) BT ST 1

Figure 4.8: BTs for examplifying execution

In Figure 4.8 we see two trees. The first, T 1, is the main tree of the example and ST 1 is a subtree that we
will use to show how link nodes work. As the trees are used to examplify execution we will not define

4. Framework and Editor 33

4.1 Framework

what specific actions and conditions do but rather concentrate on the flow of execution . We also define
the results of the leaf nodes, conditions and actions, in Table 4.1.

Node Name Result Execution Time
C1 Success 1 ms
A1 Failure 5 s
A2 Success 2 s
A3 Failure 1 s
A4 Failure 50 ms
A5 Success 5 s

Table 4.1: Execution result for leaf nodes

We recommend that the programmer uses the BT thread wrapper for executing BTs. This is due to the
handling of the barriers needed, if an action takes time to execute and the exectuing thread cannot hold
until the action is done. For example pausing execution, so the game frame can terminate, avoiding
lag in the game experience. Specifically, in StarCraft there is on average 40 ms of execution time per
game frame. Even though the actions do not take time to finish execution it is recommended to use the
wrapper if the tree contains parallel nodes. This ensures that the parallel returns correctly as all threads
are synchronized around the barrier from the wrapper. This is also why our example will use the thread
wrapper class.

When the BT is instantiated with the nodes it contains, it is added to a BehaviorTreeThreadWrapper,
which sets a barrier throughout the BT and subtrees. Once this is done the thread wrapper is ready to
execute the BT. The execution is initiated with the Start method. This method starts the thread executing
the BT.

The execution of a BT starts by calling the Execute method of the root node of the tree. All nodes are
required to implement the Execute method to ease execution. The root node in the example in Figure 4.8
is PS1, which is a probability selector node. The probabilities define how likely the node is to execute
each of its children. PS1 will execute the first branch with probability 0.9 and the second branch with
probability 0.1. The Execute method of the probability selector will select a branch based on these
probabilities and here we assume it selects the first branch, due to the high probability.

The probability selector then executes the Execute method of the child in the first branch. This child is
the sequence node Seq1. Seq1 will start executing its children one by one until either one fails or all
children succeed. Seq1 starts by calling Execute on the condition node C1. From the Table 4.1 we see
that C1 is defined as succeeding with an execution time of one ms. For this reason we will not need to
pause the execution as one ms execution will not cause lag in the game. This means that the first child of
Seq1 has succeeded. Seq1 will then execute the next child which is the action node A1.

The action node A1 can take time to execute and in Table 4.1 we define it as taking five seconds to
execute. For this reason we need to allow the tree to pause execution while the action is performed in the
game environment. To better illustrate why this is important, imagine that the action is a move command
to a unit. It will take some amount of time for the unit to move to the given position and the action node
cannot return success or failure before it has either reached the position or it has failed to do so. Here the
barrier from the thread wrapper comes into play.

As we are still running as part of the Start method of the wrapper, we halt the execution of the tree by

34 4. Framework and Editor

4.1 Framework

signaling and waiting at the barrier. The thread wrapper is waiting for this condition to be true. Once this
happens the Start method will return and the game can continue execution. To resume execution of the
tree, the Continue method must be called e.g. on the event of a new game frame. This method releases
all those threads waiting at the barrier and waits for them to either terminate or reach the barrier again.
A1 may take several game frames to terminate and as such the thread may be awoken many times before
it can determine if the action has terminated.

A1 is defined to be a failure and will return this to Seq1. Seq1 will then, because one of its children failed,
return a failure to PS1. A selector node handles failure by executing another of its children. PS1 will try
to execute SS1 which is the other child of the selector. SS1 is a sequential selector that will attempt to
execute its children one by one until one succeeds or all children fail.

SS1 will first execute the link node pointing to ST 1. A link node simply executes another BT and the
success or failure of this tree defines the success or failure of the link node.

ST 1 is a small subtree and is depicted in Figure 4.8b. The root node of the tree is the parallel node AP1.
AP1 requires all of its child threads to succeed in order to succeed itself. AP1 starts two new threads,
one for each of A2 and A3. AP1 then removes a participant from the barrier and adds two new for the
children. The reason that a parallel node removes a participant from the barrier is because the parallel
node will start busy waiting on the child threads to complete. This must be done separately from the
barrier, as it would not reach the required participants to pause execution of the tree otherwise. Each
child, A2 and A3, will now execute their actions. These actions take some time to execute as well and
this will cause the actions to pause execution until they are done. In Table 4.1 we see that A2 succeeds
and A3 fails. As AP1 required all children to succeed the node fails resulting in a failure of ST 1.

SS1 will attempt to execute its second child as ST 1 failed. SS1 then executes D1. D1 is a decorator.
Decorators are as explained the wild cards of BTs. These nodes can add features not available through
the use of other nodes. In our example we imagine that D1 runs an algorithm to select a position on the
game map needed in the rest of the branch. D1 then proceeds to execute its child MP1.

MP1 is a MParallel node. MParallel nodes are given a specific number of children that need to succeed
in order for the node to succeed. MP1 has two children and it requires one of them to succeed. A4 and A5
will then be executed just as with A2 and A3 under AP1. Table 4.1 shows that A4 will fail rather quickly.
This has no immediate effect on the node as the rest of the nodes need to terminate before the result can
be determined. Once A5 terminates with success MP1 will determine that it has succeeded.

The success of MP1 will in turn affect D1 which also succeeds. SS1 will now also succeed as one of its
children succeeded. SS1 is a child of PS1 which also relies on one of its children to succeed in order to
succeed. This condition is now also true as SS1 succeeded. PS1 is the root node of T 1 and as PS1 has
now succeeded, the tree T 1 has executed with success as a result.

4. Framework and Editor 35

4.2 Editor

4.2 Editor

The purpose of the editor is to supply the framework with the structure of the BTs, such that they are
ready to be executed by the framework. For this, the editor is developed as a visual designer where BT
nodes can be arranged and connected into BTs visually, giving an easily comprehensible structure of the
BTs compared to the actual code representation in the framework.

The editor is implemented in WPF using an article series on developing a Diagram Designer by the user
sukram available at The Code Project [22].

GUI Layout

The current revision of the editor offers a simple interface with a set of basic features needed to build
BTs. Figure 4.9 shows the layout of the editor.

Figure 4.9: Main window layout in the editor.

The interface can be separated in two distinct areas: A menu area and a designer area. The menu
area contains buttons for each available BT node that can be added to the designer area and used to
contruct BTs. Implementation of the nodes and how they are presented in the designer area is discussed
in Section 4.2. The File menu entry offers export to PNG image files of the BT in the designer area.
Furthermore, the File menu entry holds an Exit option, which closes the editor.

Designer Canvas

The designer area handles visual representation of the BT nodes and allows creation of BTs and editing
these. It is implemented with the DesignerCanvas class which inherits the Canvas class available in
.NET. The canvas class defines an area where child elements can be explicitly positioned using coordi-
nates within the canvas frame. Selecting one of the available BT nodes in the menu area, adds the given
node to the child collection of the canvas, thus making it visible in the canvas frame.

36 4. Framework and Editor

4.2 Editor

The DesignerCanvas class overrides the Canvas class’ OnMouseDown, OnMouseMove and Measure-
Override methods. Overriding the OnMouseDown and OnMouseMove methods, multiple nodes in the
canvas can be selected for editing by holding down a mouse button and drag-selecting a set of nodes.
This makes it easy to select a subtree of the current BT and e.g. reposition the entire branch. The Mea-
sureOverride override handles resizing of the canvas when nodes are moved outside the bottom or right
bounds of the canvas. The canvas is then properly resized according to the repositioning of the nodes.

Node User Controls

The individual BT nodes that are added to the canvas are implemented as simple User Controls. User
controls can be viewed as reusable components that can contain other controls, resources and more.
There are almost no limitations to what can be contained in a user control, making them ideal for creating
the BT nodes.

The implementation of the sequence node user control in the XAML visual editor can be seen in Fig-
ure 4.10 while Listing 4.1 is the corresponding XAML code.

Figure 4.10: The sequence node user control in the XAML visual editor.

1 < U s e r C o n t r o l x : C l a s s =" B e h a v i o r C r a f t . R e s o u r c e s . Nodes . S e l e c t o r S h a p e " mc : I g n o r a b l e ="
d " d : D e s i g n H e i g h t =" 40 " d : DesignWidth=" 200 ">

2 < Border Borde rBrush =" Black " B o r d e r T h i c k n e s s =" 3 , 3 , 3 , 3 " C o r n e r R a d i u s =" 8 , 8 , 8 , 8 "
Background=" White ">

3 <Grid >
4 < Labe l C o n t e n t =" Labe l " H e ig h t =" 28 " H o r i z o n t a l A l i g n m e n t =" C e n t e r "

Margin=" 1 2 , 0 , 1 2 , 0 " Name=" S e l e c t o r L a b e l " V e r t i c a l A l i g n m e n t =" C e n t e r
" V e r t i c a l C o n t e n t A l i g n m e n t =" C e n t e r " FontWeight =" Bold " F o n t S i z e ="
16 " Padd ing =" 1 " / >

5 </ Grid >
6 </ Border >
7 </ U s e r C o n t r o l >

Listing 4.1: The XAML code for a selector node.

All the BT node user controls share the <Label> control, with the Name property differing. This la-
bel handles the name displayed on the corresponding node, and is supplied by user input whenever a
node is added to the canvas. Sizing of all the node user controls when added to the canvas is handled
automatically with respect to the text length of the label.

When nodes are added to the canvas, they are not added directly by their user control representation.
Instead the class NodeItem is used as a container class for all nodes being added to the canvas. This
class inherits the ContentControl class from .NET, which allows us to add the node user controls as the
NodeItems content using ContenControls Content property.

4. Framework and Editor 37

4.2 Editor

The NodeItem class also uses the MoveThumb and Connector classes as templates. The Connector class
handles the connection points on nodes used to visually link parent and child nodes on the canvas. This
is described in greater detail in Section 4.2. MoveThumb inherits the Thumb class from .NET, which
has a DragDelta event. The DragDelta event is fired when a NodeItem is clicked and dragged. An
MoveThumb_DragDelta eventhandler is added to DragDelta, which handles repositioning of NodeItems
within the canvas as a response to the DragDelta event. This allows a user to freely reposition individual
or multiple nodes within the canvas frame by simply dragging them around.

Connecting Nodes

Visually connecting parent and child nodes in the canvas is implemented using four classes, and is best
described step by step. Figure 4.11 shows in four steps how a parent node is connected to a child node.

(a) (b) (c) (d)

Figure 4.11: Creating a connection between a parent and a child node.

When hovering the mouse over a node in the canvas, two connector points on the node becomes visible
as can be seen in Figure 4.11a. The connector points are added to the NodeItem as a template using
the Connector class as the template. The Connector class handles the connector point relative to the
node’s position in the canvas. All nodes currently share the same Connector template, which is why both
non-leaf and leaf nodes have two connector points.

By clicking the mouse and holding the mouse button a connection can be made to a child node by drag-
ging a connection to it. Figure 4.11b shows how the drag connection is visually represented by a line
between the parent node and the current position of the mouse. This line is handled by the Connec-
torAdorner class using an Adorner from .NET. An Adorner works like an elastic rubberband in the sense
that it can expand and contract according to e.g. the mouse being moved.

As the drag connection nears a connector point on the child node, the child nodes connector points
becomes visible as shown in Figure 4.11c. Letting go of the mouse button with the drag connection
on a connector point creates a connection between the parent and the child node. The connection is
handled by the Connection class, which mainly handles the visual representation of a connection as seen
in Figure 4.11d.

Finally, whenever a parent node, child node, or both are repositioned in the canvas frame as a result of
a drag movement, the connection between these also need to be repositioned. This is handled by the
ConnectionAdorner class, which inherits the Adorner class. An adorner is used as described for the drag
connection previously.

38 4. Framework and Editor

4.2 Editor

Building a Behavior Tree

The editor currently supports all BT nodes specified in Section 3.3 and thus it is possible to build BTs
utilizing all of these nodes. Figure 4.12 shows the strategy BT from Section 5.1 built in the editor, using
selector, sequence, condition and link nodes.

The editor is available for testing on the CD enclosed with the report.

Figure 4.12: The strategy BT constructed in the editor.

4. Framework and Editor 39

5Case Study

In the previous chapters we introduced the game Starcraft which we will use for our case study. Further-
more, we looked at the theory of BTs and introduced our proposed framework. In this chapter we will
construct the BTs that we are going to use for testing. These trees are based on the simplified scenario
we introduced in Section 2.4.

The way we decided to construct the BTs is by separating the what from the how. We have the main BT,
Strategy, that consists of the strategies we can apply, which is the what. Each strategy is a link node that
links to another BT. These trees define how the strategies are going to be executed, the how. Another
way to construct the BTs, is to assume we have a goal we want to achieve. To achieve the goal we need
some subgoals, and to achieve these subgoals we need sub-subgoals etc. As an example of this take a
glance at Figure 5.1. Our main goal is to run a strategy. However, to run a strategy we need to choose
one and to choose one we need some strategies we can choose from. We continue to do this until the
whole tree is constructed. The following subsections describe our BTs in more detail.

5.1 Behavior Tree: Strategy

The Strategy BT is the top most or main tree of all the BTs. It is the tree that decides which strategy will
be used in a game. The tree is illustrated in Figure 5.1.

The sequence Run strategy first checks the condition !(Game over?) to check whether the game is
finished or not. If it returns success it will run the selector Choose strategy that will choose to run one of
its children. All these children are link nodes, which will execute other BTs. It can either be Attack and
scout, Harass, All in, Defend or Multiple attacks.

40

5.2 Behavior Tree: Attack and Scout

Run strategy

!Game
over?

Choose strategy

L L L L L

Attack and
scout

Harass All in Defend Multiple
attacks

Figure 5.1: Strategy BT.

5.2 Behavior Tree: Attack and Scout

The Attack and scout BT depicted in Figure 5.2, shows how the Attack and Scout BTs are executed
simultaneously.

Attack and scout

L L

Attack Scout

Figure 5.2: Attack and scout BT.

First, the Attack behavior allocates 12 marines. It then chooses one attack route among the three possible
choices Top, Mid and Bottom, and issues the attack order to the units. The Scout behavior orders one unit
to each lane, to scout for information about the opponent. Both BTs can be seen in Figure 5.3.

5. Case Study 41

5.2 Behavior Tree: Attack and Scout

Attack

Attack
top

Attack
mid

Attack
bottom

Top Mid Bottom

Allocate 12
marines

Attack
enemy

HQ

Attack
enemy

HQ

Attack
enemy

HQ

0.33 0.33 0.33

Scout

Allocate 1
marine

Allocate 1
marine

Allocate 1
marine

L L L

Scout move
top

Scout move
mid

Scout move
bottom

Figure 5.3: The BTs of Attack and Scout

As scouting is vital in our scenario of StarCraft, we need the scouting marines to stay alive as long as
possible. Which brings us to the Scout move top BT that is given in Figure 5.4. Even though the Scout
BT links to three different BTs. We choose only to describe one of them, as they are all very similar to
each other. The only difference between them is the scouting route for the marine.

42 5. Case Study

5.2 Behavior Tree: Attack and Scout

Sc
ou

t

Vi
si

on

Fr
om

 to
p

to
 e

ne
m

y
H

Q

!G
ot

vi

si
on

?
!G

ot

vi
si

on
?

M
ov

e
to

to
p

M
ov

e
to

en

em
y

H
Q

Fr
om

 H
Q

 to
 to

p

R
ep

ea
t u

nt
il

su
cc

es
fu

l

Se
le

ct
or

 1

At

lo
ca

tio
n?

Vi
si

on

G
ot

vi

si
on

?
M

ov
e

to

H
Q

Vi
si

on
R

ep
ea

t u
nt

il
su

cc
es

fu
l

Se
le

ct
or

 2

At

lo
ca

tio
n?

Vi
si

on

G
ot

vi

si
on

?

M
ov

e
to

 to
p

Figure 5.4: Scout move BT.

This tree handles the scouting behavior of a marine . What we want to achieve with these scouting
marines, is to get information on the enemy without getting the scoting marine killed. So if the enemy
tries to kill the scout, we move away. When the marine is safe, we move in again to get vision of the
enemy. As we see in the tree, there are two branches. The left branch handles the route from our HQ
to the top left corner of the map, which we call top. The right branch handles the route from top to the
enemy’s HQ. The marine will move to top if he encounters no enemy units. However, if he gets vision
of enemy units on the route to top, he will move back to the HQ. The same applies for the right branch.

5. Case Study 43

5.3 Behavior Tree: Harass

The marine will move to the enemy’s HQ as long as he encounters no enemy units. If he does encounter
enemy units, he will immediately move back to the top.

5.3 Behavior Tree: Harass

The Harass BT in Figure 5.5 handles the strategy for harassing the opponent. We allocate six idle marines
and order them to harass the opponent through one of the three attack routes Top, Mid or Bottom. Each
of these branches in the tree will execute the Harass move BT for their respected lane. The Harass move
mid tree, illustrated in Figure 5.6, handles the subtle details for the harass strategy in Mid path.

Harass

6
marines

?

Allocate 6
marines

L L L

Harass move
top

Harass move
mid

Harass move
bottom

Choose path

Figure 5.5: Harass BT.

The tree handles it by having a strategy we call Hit and run. We want the 6 marines allocated earlier to
go down the mid attack route and harass the opponent without too many casualties.

First we check whether the enemy is visible or not, if he is not visible we move our marines towards
the opponent’s HQ. We then check again for visible enemies, if we are able to see the enemy, we check
whether our marines are in range of the enemy. If not, we move in range and proceed to attack the nearest
enemy units for one second. Afterwards we retreat from the enemy.

44 5. Case Study

5.3 Behavior Tree: Harass

Hit and run

Range Run for 1
sec.

In
range?

Move in range
to nearest

enemy group

Attack nearest
enemy

Move to
enemy HQ

Enemy
visible?

Repeat
until

success

Retreat

!Enemy
visible?Move to

HQ

Harass mid

Figure 5.6: Harass attack BT.

5. Case Study 45

5.4 Behavior Tree: All In

5.4 Behavior Tree: All In

The All in BT in Figure 5.7 gathers all the units we have and sends them to attack the opponent through
the mid lane. This strategy is risky as it leaves the HQ vulnerable to flank attacks from top and bottom. In
this example we define that the BT must have 13 marines available. This is a dummy condition to show
that it is necessary to have a condition here, otherwise the BT would all in with as little as one marine.

Allocate all
marines

Attack mid

All in

Attack enemy
HQ

All in

13 marines
available?

Figure 5.7: All in BT.

46 5. Case Study

5.5 Behavior Tree: Defend

5.5 Behavior Tree: Defend

The Defend strategy handles the defence of the HQ. The Defend tree in Figure 5.8 has two phases of
defence. In the first phase, we try to defend by using only nearby units. As a result, units that are already
attacking the enemy will keep attacking the enemy, while units nearby our HQ will be gathered in front of
our HQ to defend it. The second phase of our defend strategy activates when the first one fails, meaning
all the defending marines died. In the second phase we send all units we have on the map back to our
HQ to make a last stand.

Gather all
nearby units

Defend

HQ under
attack?

1. Phase

2. Phase

Move marines
in front of HQ

Attack
enemy

Gather
all units

Move all
units home

Attack
enemy

HQ under
attack?

Figure 5.8: Defend BT.

5. Case Study 47

5.6 Behavior Tree: Multiple attacks

5.6 Behavior Tree: Multiple attacks

The last strategy is the Multiple attacks BT, which is illustrated in Figure 5.9. We take our main force
and split it into either two or three groups. If we split into two, there are three possible lane options to
choose from. We can either attack from top and mid, from top and bottom or from mid and bottom. If
we split the army into three, we will attack at all three fronts simultaneously. As we see in Figure 5.9,
no matter what branch we choose to run, when we split the army in two, we will end up in a link node.
The trees that are linked to are quite simple. The root node is followed by a parallel node, followed by
the specific attack route node, ending with the action nodes that issues the attack order. An example of
one of these BTs is given in Figure 5.10.

Multiple attacks

Two front
attack

Three front attack

L L L

Attack top
 mid

Attack top
 bottom

Attack mid
bottom

Attack
top

Attack
mid

Attack
bottom

Top Mid Bottom

Attack
enemy HQ

Attack
enemy HQ

Attack
enemy HQ

Allocate 12
marines at
each path

Allocate 24
marines top

and mid

Allocate 24
marines top

and mid

Allocate 24
marines top

and mid

Figure 5.9: Multiple attacks BT.

48 5. Case Study

5.6 Behavior Tree: Multiple attacks

Attack mid bottom

Attack
mid

Attack
bottom

Mid Bottom

Attack
enemy HQ

Attack
enemy HQ

Figure 5.10: Multiple attacks through mid and bottom BT.

5. Case Study 49

6Test

We have based the tests the BTs proposed in Chapter 5 and use these to show whether it is possible to
apply BTs in creating AI for StarCraft and, through this, if BTs can have a general application in RTS
games.

We will test each strategy behavior by itself. Based on the performance of the behavior, we will discuss
what we expected to happen, what did happen and how to correct possible mistakes in the behaviors. The
results of these tests are based purely on our subjective opinion of performance and flaws in the behavior
compared to the theory of BTs described in Section 3.3.

Replays from the All In, Harass Attack and Defend tests are available on the attached CD or by request
from the authors.

6.1 Test: Attack and Scout

The behavior we want to test here is shown in Section 5.2. The behavior is designed to be a basic strategy
where the AI will attempt to attack in one of the three paths while scouting all paths with one marine.

Expected Behavior:

We expect to see two things from this behavior. First off we expect to see the behavior send out three
marines; one to scout each path. Second we expect it to assemble 12 marines and attack along one of the
paths with an approximate probability of 1

3 for each path.

Observed Behavior:

We observed some flaws in the scout behavior, mainly due to race conditions on the list of available
marines. This is caused by the simultaneous allocation of one marine to each path. Also , when running
the attack tree alone, the behavior is capable of attacking along one of the defined paths. When running
one of the branches of the scout tree alone, the allocated marine was able to scout the path and run away
when encountering enemy units.

Evaluation:

It was possible for the behavior to execute its components individually, but the simultaneous execution
proved problematic. We will have to address the problem of simultaneous execution to improve the
functionality of the framework.

50

6.2 Test: All In

6.2 Test: All In

The behavior we want to test here is shown in Section 5.4. In this behavior the AI will assemble all
available forces and attack through the mid path with full force. The aim is a last resort move when
nothing else is possible.

Expected Behavior:

We expect to see that the behavior will gather all available units, which in this case will be 13 marines,
and attack through the mid path of the map.

Observed Behavior:

The human opponent attempted to harass the AI, but the behavior executed the all in strategy, when it
had gathered 13 marines. The AI attempted to attack through the mid section of the map as intended and
eliminated scouts along the path. However, the behavior crashed, when the main battle at the enemy HQ
was underway. This was due to a loop inside the attack action node, which iterates through the allocated
marines to check whether they are dead. This collection of marines must not be modified during iteration,
which was what happened. Again we are seeing problems with the simultaneous execution of the BTs.

Evaluation:

The behavior acted as intended by design, but the crash failure is a definite concern. We will need to
investigate solutions for the dynamic handling of marine deaths.

6.3 Test: Harass Attack

The behavior we want to test here is shown in Section 5.3. The harass behavior is the most complex
behavior in the test and as such we have only implemented one subbranch of the tree. In this behavior
we want to use six marines and attempt to take out enemy marines without losing any marines.

Expected behavior:

We expect to see the behavior gather six marines and run along the mid path. From then on it will attempt
to find one common target, the closest to the group, and attack this target for one second before running
away.

Observed behavior:

We saw the behavior assembling six marines and attempt to take out one marine at a time. The behavior
did the intended hit and run style attack taking out, or damaging, one marine. There were some issues in
the implementation, which seem to be caused by the structure of the harass BT.

6. Test 51

6.4 Test: Defend

Evaluation:

This test showed, how hard it can be to create a behavior that mimics a common playstyle of a human
player. The complexity made the tree prone to structural errors. The nodes and the framework itself did
not show any errors during this test.

6.4 Test: Defend

The behavior we want to test here is shown in Section 5.5. The behavior will, given the HQ is under
attack, attempt to move nearby marines back to defend it. If unsucessfull, all units on the map will be
moved back.

Expected Behavior:

We expect to see the behavior order all the units closest to the HQ back, in an attempt to defend it, if it is
under attack. If all nearby friendly units are killed, we expect to see the behavior order all units back to
the HQ in an attempt to defend it.

Observed Behavior:

The behavior acted as intended. When enemy units started attacking the HQ, all nearby units were
ordered to attack move towards the friendly HQ, to take out the enemy units. The enemy units were
eliminated, however the check to avoid phase two failed to stop the sequence, making the marines attack
move towards the mid of the map.

Evaluation:

The behavior did as intended, but structural errors and lack of proper methods in BWAPI to check
whether a structure is under attack, made it problematic to implement the intended behavior.

6.5 Test: Multiple Attack

The behavior we want to test here is shown in Section 5.6. This behavior is similar to the attack behavior.
The difference lies in the behavior’s attempt to attack the enemy on several fronts simultaneously.

Expected Behavior:

The multiple attack behavior has two distinct execution branches. One branch attempts to attack two
paths at once and selects one of the three possible pairs of paths. The other execution branch will attempt
to assemble enough marines to perform an attack in all three paths simultaneously. We have defined,
that no matter which execution path is followed, there must be at least 12 marines allocated to each path,
giving 24 marines in a two front attack and 36 in a three front attack.

52 6. Test

6.5 Test: Multiple Attack

Observed Behavior:

Observations show that the behavior is able to allocate both two and three groups of 12 marines for use
in attacks. We could also observe that the behavior was able to choose a pair of paths for the two front
attack. However, due to the way the scenario is constructed and the execution speed of the tree, the three
front attack was only chosen when we disabled the two front attack option.

Evaluation:

The test showed that the behavior acted the way it was intended, but as mentioned there were problems
choosing between the two types of multiple attack. The reason for the three front attack was not executed,
was because it never accumulated the required 36 marines. Due to this, the condition checking whether
the marines were available would fail, causing the sequential selector that chooses between the two types
of multiple attack, to choose the two front attack, because it is easier to accumulate 24 marines.

This problem is in itself not caused by BTs in general, but rather a problem that must be addressed during
the design of the behavior. A solution, could be to introduce a latch that would continue to attempt the
selected multiple attack several times, before failing and trying the other one.

6. Test 53

7Improving Framework and Editor

Based on the experience recieved from the previous chapter on testing, we will in this section discuss
future improvements for both the framework and the editor.

7.1 Framework Improvements

During the development and later use of our framework several key areas have been identified for im-
provement.

Interrupts/Exceptions

A key improvement on the current framework would be to implement interrupts and/or exceptions. These
should be implemented to make it possible to reset the tree or parts of the tree when certain, perhaps
unexpected, events occur. An example of its use is if a marine is being moved as part of an action node
execution, the marine might encounter enemies while moving. Here an interrupt could be thrown to
allow for a switch in the execution to order the marine to retreat.

As we would like to avoid game API specific code to be in the framework, a solution to implement
interrupts, could be to only allow action, condition and decorator nodes to throw interrupts and only
allow decorators to handle them. By doing it this way, we can implement a standard way of passing
interrupts up the tree, by making the basic constructs, such as sequences and selectors simply pass the
interrupt to their parents, until it reaches a decorator that is capable of handling the interrupt. If the
interrupt reaches the top of the tree, two things could happen; one could be that the tree throws an
unhandled interrupt error informing the game designer that something is wrong, or that the tree simply
resets itself and restarts execution.

Blackboard

After using the blackboard in its current state, where each BT has its own blackboard, we have come to
realize this is not an optimal solution. Since this imposes a lot of extra work during coding to make sure
which blackboard each value is written. The process of making the blackboard simple will not have an
impact on the overall functionality of the BT framework.

We would also like to make the blackboard type safe by ensuring that the requested value has the expected
type when executing the blackboard, rather than checking the value, when it has been returned.

BehaviorTreeThreadWrapper

After using the framework for testing, we have come to the conclusion that the BT thread wrapper can
be merged into the BT class itself. There is no need for a separate class. One of the things that we have

54

7.2 Editor Improvements

concluded is that it is always necessary to have a barrier and as such this should be defined in the tree
class itself. If the barrier is in the tree class, the execution, pausing and resuming of the tree can then also
be merged into the class. This makes it possible to use both threaded and unthreaded BT execution from
the same class.

More basic constructs

The framework could benefit from more basic constructs, such as builtin loop decorators that either
iterate a number of runs, or a number of successes/failures. Another basic construct that could be useful
is a wait decorator capable of waiting a given amout of time, before executing its child.

Debugging directly in the IDE

As a way of making it easier to debug constructed BTs, we would like to add the ability to debug
the projects directly in an IDE, such as Microsoft Visual Studio. One solution to this could be, with
permission from the author, to include the bwapi-mono-bridge projects directly in a solution, so that
compiling and debugging can happen in Microsoft Visual Studio.

7.2 Editor Improvements

The current implementation of the editor does not have functionality to work together with the frame-
work, as a few features are still missing.

Exporting Behavior Trees

It is not possible to export the BTs created in the editor to the framework, which is a key feature for
the editor to be of actual use. Exporting the BTs to e.g. XML format would allow us to load it into the
framework, by parsing the XML code and then constructing the BTs automatically. Currently BTs have
to be coded manually in the framework, which takes considerably longer time, compared to building
them in the editor and exporting them to the framework.

Node Properties

Other than the difference in the visual appearance of nodes, there are no distinct properties for the indi-
vidual nodes in the editor. It is not possible to set the probability distribution for a probaility selector,
edit the contents of a decorator node, defining which BT a link node links to e.g. To accommodate this,
a property editor, that becomes visible when individual nodes are selected, should be implemented.

Multiple Canvases

The editor only allows for one BT to be built, because there is only one canvas with one root node. Being
able to have multiple canvases open at once will remove this limitation. This can be implemented either
as different canvas tabs, like webpage tabs in webbrowsers, or having multiple windows openend, each

7. Improving Framework and Editor 55

7.2 Editor Improvements

with a canvas. Working on multiple canvases at once, would also allow use of the link nodes to link to a
BT on another canvas.

56 7. Improving Framework and Editor

8Conclusion

To summarize the work done in this project. We have:

• Discussed the game of StarCraft to address some of the challenges, creating an entertaining and
challenging AI for RTS games.
• Presented a survey of scripting, FSM and BTs on their applicability in RTS games.
• Implemented a framework and editor for using BTs in behavior creation.
• Successfully applied BTs, creating an AI for an RTS game scenario.

First of all by addressing the different aspects of StarCraft, we highlighted the challenges, creating an
AI for an RTS game. The overall micro management and macro management aspects of StarCraft, also
exist in most other RTS games. The scenario created for the case studies served well as a simplification
of a full game scenario, as it captured the important aspects of the game. The elements of resources and
base building were left out of the scenario to simplify it further, such that we could focus on strategic
decision making and disregard build orders and resource management.

As the evaluation of the different AI methods pointed out, scripting and FSM had their strength and
weaknesses. BTs attempt to address these weaknesses, by being more structured and modular. The mod-
ularity and reusability of BTs showed its usefulness, when all the framework nodes and nodes interacting
with the game environment were implemented. With all the building blocks ready, it was just a matter of
building behaviors, according to the trees designed in Chapter 5.

Through tests of the proposed BTs we saw an indication that BTs can be used for creating AIs for RTS
games. There are of course problems that are unique with regards to the BT and RTS game combination.
Amongst these, the most apparent seems to be the handling of the fact that units may or may not exist
during execution of the behavior, as opposed to a behavior driven NPC player in an FPS game.

After doing the tests, we discovered several key points for improving the BT framework. The most impor-
tant problems discovered, concerns the threading execution of the trees. It introduces several possibilities
for race conditions and deadlocks. These problems are of a general concern, when using threading, but
it is necessary to look at solutions, to minimize the risk of encountering them. Additionally, the editor
still needs further improvement for it to be functional in combination with the framework. It is currently
not possible to export BTs from the editor and use them in the framework.

57

8.1 Further Work

8.1 Further Work

The work done in this report introduces several possibilities for further study in the area of BTs.BTs
have been shown, to be a possibly viable method, to handle the AI in an RTS game, namely StarCraft.
However, as with the commonly used methods for AI in the game industry, scripting and FSMs, BTs
only exhibit static behavior.

The framework and editor implemented and documented in this report, serve as a great foundation for
developing and utilizing BTs in StarCraft. As pointed out in Chapter 7 there is still room for much
improvement of both the framework and editor.

Based on the work done we propose two general suggestions for further study and research.

1. How can the framework and the editor be combined and improved to fully utilize the notion of
BTs in game AI and assist in making the creation of BTs less complex?

2. Can the notion of BTs be extended with classical AI techniques to create more adaptive and human-
like behavior.

As we described in Chapter 3, the goal of game AI devlopment, is to provide entertaining and challenging
AI opponents, that display intelligence and human-like behavior. In other words the ideal goal of game
AI research is to create AI which is indistingusiable from a human. Such AI would give players the best
possible experience when playing. As Alan Turing once pointed out:

"If a machine acts as intelligently as a human being, then it is as intelligent as a human being."

We are still a long way from achieving this goal, but as new methods and theories emerge, we come ever
so close to reaching this goal.

58 8. Conclusion

AClassdiagram

+B
eh

av
io

rT
re

e(
in

d
 n

am
e

: s
tr

in
g,

 in
d

 r
o

o
t

: N
o

d
e)

+S
ep

ar
at

eT
h

re
ad

(i
n

d
 b

ar
 :

B
TB

ar
ri

er
)

: v
o

id
+C

lo
se

B
eh

av
io

rT
re

e(
)

: v
o

id
+E

xe
cu

te
()

 :
b

o
o

l
+N

am
e(

)
: s

tr
in

g
+G

et
Sy

n
c(

)
: B

TB
ar

ri
er

+S
et

Sy
n

c(
in

d
 b

ar
 :

B
TB

ar
ri

er
)

: v
o

id
+R

es
u

lt
()

 :
b

o
o

l

-r
o

o
t

: N
o

d
e

-s
yn

c
: B

TB
ar

ri
er

-r
es

u
lt

 :
b

o
o

l
-s

ep
ar

at
eT

h
re

ad
 :

b
o

o
l

-n
am

e
: s

tr
in

g

B
e
h
av
io
u
rT
re
e

+E
xe

cu
te

()
 :

b
o

o
l

+G
et

Sy
n

c(
)

: B
TB

ar
ri

er
+S

et
Sy

n
c(

in
d

 b
ar

 :
B

TB
ar

ri
er

)
: v

o
id

+G
et

P
ar

en
tT

re
e(

)
: B

eh
av

io
u

rT
re

e
+S

et
P

ar
en

tT
re

e(
in

d
 t

re
e

: B
eh

av
io

u
rT

re
e)

 :
vo

id

-s
yn

c
: B

TB
ar

ri
er

-p
ar

en
tT

re
e

: B
eh

av
io

u
rT

re
e

N
o
d
e

Le
a
fN
o
d
e

N
o
n
Le
a
fN
o
d
e

A
ct
io
n

C
o
n
d
it
io
n

+L
in

k(
in

d
 s

u
b

Tr
ee

 :
B

eh
av

io
u

rT
re

e)

-s
u

b
Tr

ee
 :

B
eh

av
io

u
rT

re
e

Li
n
k

-c
h

ild
re

n
 :

N
o

d
e

Se
le
ct
o
r

+S
eq

u
en

ce
(i

n
d

 n
o

d
es

 :
N

o
d

e)
-H

as
M

o
re

N
o

d
es

(i
n

d
 in

d
ex

 :
in

t)
 :

b
o

o
l

-c
h

ild
re

n
 :

N
o

d
eSe
q
u
e
n
ce

-C
h

ild
re

n
 :

N
o

d
e

-R
es

u
lt

s
: b

o
o

l
-T

h
re

ad
s

: T
h

re
ad

P
a
ra
lle
l

-c
h

ild
 :

N
o

d
e

D
ec
o
ra
to
r

+S
eq

u
en

ti
al

Se
le

ct
o

r(
in

d
 n

o
d

es
 :

N
o

d
e)

Se
q
u
e
n
ti
al
Se
le
ct
o
r

+P
ro

b
ab

ili
ty

Se
le

ct
o

r(
in

d
 n

o
d

es
)

-S
el

ec
tN

o
d

e(
)

: N
o

d
e

-p
ro

b
ab

ili
ti

es
 :

d
o

u
b

le
-a

tt
em

p
te

d
 :

N
o

d
e

P
ro
b
ab

ili
ty
Se
le
ct
o
r

+A
P

ar
al

le
l(

in
d

 n
o

d
es

 :
N

o
d

e)
-R

u
n

(i
n

d
 id

 :
o

b
je

ct
)

: v
o

id

A
P
ar
al
le
l

+S
P

ar
al

le
l(

in
d

 n
o

d
es

)
-R

u
n

(i
n

d
 id

 :
o

b
je

ct
)

: v
o

id

-m
u

st
Su

cc
ee

d
 :

N
o

d
e

SP
ar
al
le
l

+M
P

ar
al

le
l(

in
d

 n
o

d
es

 :
N

o
d

e,
 in

d
 m

in
Su

cc
es

 :
in

t)
-R

u
n

(i
n

d
 id

 :
o

b
je

ct
)

: v
o

id

-m
in

Su
cc

es
 :

in
t

M
P
ar
al
le
l

-R
u

n
()

 :
vo

id
+S

ta
rt

()
 :

vo
id

+C
o

n
ti

n
u

e(
)

: v
o

id
+R

es
ta

rt
()

 :
vo

id
+E

n
d

()
 :

vo
id

-I
sW

ai
ti

n
g(

)
: b

o
o

l
+T

re
e(

)
: B

eh
av

io
u

rT
re

e
+B

eh
av

io
rT

re
eT

h
re

ad
W

ra
p

p
er

(i
n

d
 t

re
e

: B
eh

av
io

u
rT

re
e)

-s
yn

c
: B

TB
ar

ri
er

-t
re

e
: B

eh
av

io
u

rT
re

e
-t

 :
Th

re
ad

B
e
h
av
io
rT
re
e
Th

re
ad

W
ra
p
p
e
r

+B
TB

ar
ri

er
(i

n
d

 c
o

u
n

t
: u

in
t)

+A
d

d
P

ar
ti

ci
p

an
t(

)
: v

o
id

+A
d

d
P

ar
ti

ci
p

an
ts

(i
n

d
 i

: u
in

t)
 :

vo
id

+R
em

o
ve

P
ar

ti
ci

p
an

t(
)

: v
o

id
+R

em
o

ve
P

ar
ti

ci
p

an
ts

(i
n

d
 i

: u
in

t)
 :

vo
id

+P
ar

ti
ci

p
an

tC
o

u
n

t(
)

: u
in

t
+P

ar
ti

ci
p

an
ts

R
em

ai
n

in
g(

)
: u

in
t

+S
ig

n
al

A
n

d
W

ai
t(

)
: v

o
id

-P
ar

ti
ci

p
an

tC
o

u
n

t
: u

in
t

-P
ar

ti
ci

p
an

ts
R

em
ai

n
in

g
: u

in
t

B
TB

ar
ri
e
r

+N
ew

B
eh

av
io

rT
re

eB
la

ck
B

o
ar

d
(i

n
d

 n
am

e
: s

tr
in

g)
 :

st
ri

n
g

+G
et

B
la

ck
B

o
ar

d
K

ey
s(

in
d

 b
la

ck
B

o
ar

d
N

am
e

: s
tr

in
g)

 :
<u

sp
ec

if
ic

er
et

>
+G

et
B

la
ck

B
o

ar
d

s(
)

: <
u

sp
ec

if
ic

er
et

>
+W

ri
te

V
al

u
eO

n
B

la
ck

B
o

ar
d

(i
n

d
 b

la
ck

b
o

ar
d

n
am

e
: s

tr
in

g,
 in

d
 v

al
u

eN
am

e
: s

tr
in

g,
 in

d
 v

al
u

e
: o

b
je

ct
)

: v
o

id
+G

et
V

al
u

eF
ro

m
B

la
ck

B
o

ar
d

(i
n

d
 b

la
ck

B
o

ar
d

N
am

e
: s

tr
in

g,
 in

d
 v

al
u

eN
am

e
: s

tr
in

g)
 :

o
b

je
ct

+E
ra

se
V

al
u

eF
ro

m
B

la
ck

b
o

ar
d

(i
n

d
 b

la
ck

B
o

ar
d

N
am

e
: s

tr
in

g,
 in

d
 v

al
u

eN
am

e
: s

tr
in

g)
 :

vo
id

+E
ra

se
B

la
ck

B
o

ar
d

(i
n

d
 b

la
ck

B
o

ar
d

N
am

e
: s

tr
in

g)
 :

vo
id

-b
la

ck
B

o
ar

d
 :

D
ic

ti
o

n
ar

y<
st

ri
n

g,
 D

ic
ti

o
n

ar
y<

st
ri

n
g,

 o
b

je
ct

>>

B
la
ck
B
o
ar
d

Figure A.1: Class diagram for the Poker test environment

59

BExecution Flow

B
TTW

P
S1

T1
Seq

1
C
1

A
1

SS1
L

ST1
A
P
1

A
2

A
3

D
1

M
P
1

A
4

A
5

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Execu
te

Tru
e

False

False

False
False

False

False

Tru
e

False

Tru
e

Tru
e

Tru
e

Tru
e

Tru
e

Sign
alA

n
d
W
ait

P
u
lse

Sgin
alA

n
d
W
ait

P
u
lse

P
u
lse

Sign
alA

n
d
W
ait

Tru
e

Figure B.1: Sequence diagram showing the execution of a behavior tree

60

Bibliography

[1] Games engines - current offerings, comparisons and research.
http://www.halycopter.com/uni/gamesengines.pdf.

[2] Blizzard Entertainment. Starcraft: Brood war, 1998.

[3] Blizzard Entertainment. Starcraft 2 editor, 2010.

[4] Blizzard Headquarters Web Team. Starcraft compendium. http://classic.battle.net/scc/, 2010. 12.
December.

[5] A. J. Champandard. The gist of hierarchical fsm. http://aigamedev.com/open/articles/hfsm-gist/,
2007.

[6] l. deathknight13579. Bwapi. http://code.google.com/p/bwapi/, 2010. 25. November.

[7] dpershouse. bwapi-mono-bridge. http://code.google.com/p/bwapi-mono-bridge/, 2010. 25.
November.

[8] M. Dyckhoff. Evolving halo’s behaviour tree ai.
http://www.bungie.net/images/Inside/publications/presentations/publicationsdes/engineering/gdc07.pdf.

[9] C. Hecker. My liner notes for spore/spore behavior tree docs.
http://chrishecker.com/My_Liner_Notes_for_Spore/Spore_Behavior_Tree_Docs, 2009.

[10] D. Isla. Handling complexity in the halo 2 ai.
http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml, 2005.

[11] LucasArts, Telltale Games. Monkey island series, 1990.

[12] P. T. Mallik Challab, Dana Nau. Automatic Planning - Theory and Practice. Number ISBN:
1-55860-856-7 in 1st Edition. Morgan Kaufmann, 2004.

[13] S. S. H. Mance E. Harmon. Reinforcement learning: A tutorial, 1996.

[14] MicroProse. Sid meier’s civilization, 1991.

[15] Midway Games. Mortal kombat, 1992.

[16] H. Muñoz-Avila. Game genres: First quick look.
http://www.cse.lehigh.edu/ munoz/ComputerGameDesignClass/classes/FSMandScripts.pptx.

[17] Namco. Tekken, 1994.

61

BIBLIOGRAPHY

[18] J. Orkin. Three states and a plan: The a.i. of f.e.a.r., 2006.

[19] J. Orkin. Goal-oriented action planning. http://web.media.mit.edu/j̃orkin/goap.html, 2010.

[20] R. Straatman. The ai in killzone 2’s bots: Architecture and htn planning.
http://aigamedev.com/premium/presentations/killzone2-planning/, 2010.

[21] P. N. Stuart Russell. Artificial Intelligence - A Modern Approach. Number ISBN: 0-13-207148-7
in Third Edition. Pearson, 2010.

[22] Sukram. Diagram designer.
http://www.codeproject.com/KB/WPF/WPFDiagramDesigner_Part1.aspx, 2008.

[23] A. Tankred and H. M. Bøgeskov. Ai modelling: Behaviour trees. Technical report, 2010.

[24] Team Ninja. Dead or alive, 1996.

62 BIBLIOGRAPHY

	Contents
	Introduction
	Video Games
	Strategy games
	Video Game Environment for This Project
	Project Purpose

	StarCraft: Brood War
	Game Aspects
	Game Mechanics
	Full Game Scenario
	Scenario
	Brood War Application Programming Interface

	AI Methods
	Scripting
	Finite State Machines
	Behavior Trees
	Additional Methods
	Evaluation

	Framework and Editor
	Framework
	Editor

	Case Study
	Behavior Tree: Strategy
	Behavior Tree: Attack and Scout
	Behavior Tree: Harass
	Behavior Tree: All In
	Behavior Tree: Defend
	Behavior Tree: Multiple attacks

	Test
	Test: Attack and Scout
	Test: All In
	Test: Harass Attack
	Test: Defend
	Test: Multiple Attack

	Improving Framework and Editor
	Framework Improvements
	Editor Improvements

	Conclusion
	Further Work

	Classdiagram
	Execution Flow
	Bibliography

